水稻 HEI10 的 RING 结构域对男性生育力至关重要,但对女性生育力并非如此。

IF 4.8 1区 农林科学 Q1 AGRONOMY Rice Pub Date : 2024-01-05 DOI:10.1186/s12284-023-00681-w
Qian Tan, Xu Zhang, Qian Luo, Yi-Chun Xu, Jie Zhang, Wan-Qi Liang
{"title":"水稻 HEI10 的 RING 结构域对男性生育力至关重要,但对女性生育力并非如此。","authors":"Qian Tan, Xu Zhang, Qian Luo, Yi-Chun Xu, Jie Zhang, Wan-Qi Liang","doi":"10.1186/s12284-023-00681-w","DOIUrl":null,"url":null,"abstract":"<p><p>HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"17 1","pages":"3"},"PeriodicalIF":4.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769960/pdf/","citationCount":"0","resultStr":"{\"title\":\"The RING Domain of Rice HEI10 is Essential for Male, But Not Female Fertility.\",\"authors\":\"Qian Tan, Xu Zhang, Qian Luo, Yi-Chun Xu, Jie Zhang, Wan-Qi Liang\",\"doi\":\"10.1186/s12284-023-00681-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.</p>\",\"PeriodicalId\":21408,\"journal\":{\"name\":\"Rice\",\"volume\":\"17 1\",\"pages\":\"3\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rice\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s12284-023-00681-w\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-023-00681-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

HEI10 是一种保守的 E3 泛素连接酶,参与减数分裂过程中的交叉形成,因此对雌雄配子的发育都至关重要。在这里,我们发现了水稻中一种新的 HEI10 等位基因,它产生的 HEI10 蛋白缺失了 N 端 RING 结构域,即 sh1(shorter hei10 1)。与之前报道的完全不育的 HEI10 空等位基因不同,sh1 表现出完全雄性不育,但保留了部分雌性生育能力。sh1 的致病突变是 OsFYVE4 和 HEI10 之间的 76 kb 反转,它打破了两个基因的完整性。等位基因测试和互补试验表明,sh1 的配子发育缺陷是由 HEI10 的破坏引起的。进一步的研究表明,短 HEI10 能正确定位到细胞核,并在细胞核中与指导减数分裂的其他蛋白相互作用;在 hei10 空系中表达短 HEI10 能部分恢复雌性的生育能力。我们的数据揭示了一种有趣的 HEI10 突变等位基因对雌雄生育能力的不同影响,为探索雌雄减数分裂的异同提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The RING Domain of Rice HEI10 is Essential for Male, But Not Female Fertility.

HEI10 is a conserved E3 ubiquitin ligase involved in crossover formation during meiosis, and is thus essential for both male and female gamete development. Here, we have discovered a novel allele of HEI10 in rice that produces a truncated HEI10 protein missing its N-terminal RING domain, namely sh1 (shorter hei10 1). Unlike previously reported hei10 null alleles that are completely sterile, sh1 exhibits complete male sterility but retains partial female fertility. The causative sh1 mutation is a 76 kb inversion between OsFYVE4 and HEI10, which breaks the integrity of both genes. Allelic tests and complementation assays revealed that the gamete developmental defects of sh1 were caused by disruption of HEI10. Further studies demonstrated that short HEI10 can correctly localise to the nucleus, where it could interact with other proteins that direct meiosis; expressing short HEI10 in hei10 null lines partially restores female fertility. Our data reveal an intriguing mutant allele of HEI10 with differential effects on male and female fertility, providing a new tool to explore similarities and differences between male and female meiosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
期刊最新文献
Grain Quality of Panicle Portions in Chalky and Low-Chalky Rice Cultivars. Identification of the Cold-Related Genes COLD11 and OsCTS11 via BSA-seq and Fine Mapping at the Rice Seedling Stage. OsIAA23 Promotes Heading by Directly Downregulating Ghd7 in rice. Multifunctional Transcription Factor YABBY6 Regulates Morphogenesis, Drought and Cold Stress Responses in Rice. OsPIPK-FAB, A Negative Regulator in Rice Immunity Unveiled by OsMBL1 Inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1