转运体克服皮肤屏障:机遇、挑战和应用。

Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain
{"title":"转运体克服皮肤屏障:机遇、挑战和应用。","authors":"Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain","doi":"10.2174/0115672018272012231213100535","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.</p><p><strong>Objectives: </strong>The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Methods: </strong>Data we searched from PubMed, Google Scholar, and ScienceDirect.</p><p><strong>Results: </strong>In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Conclusion: </strong>In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.</p>","PeriodicalId":94287,"journal":{"name":"Current drug delivery","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications.\",\"authors\":\"Bhupendra Dixena, Rashmi Madhariya, Anupama Panday, Alpana Ram, Akhlesh K Jain\",\"doi\":\"10.2174/0115672018272012231213100535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.</p><p><strong>Objectives: </strong>The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Methods: </strong>Data we searched from PubMed, Google Scholar, and ScienceDirect.</p><p><strong>Results: </strong>In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.</p><p><strong>Conclusion: </strong>In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.</p>\",\"PeriodicalId\":94287,\"journal\":{\"name\":\"Current drug delivery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0115672018272012231213100535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115672018272012231213100535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:与注射和口服等传统方法相比,透皮给药系统(TDDS)具有多种优势,包括防止首过代谢、提供一致和持续的活性、减少副作用、允许使用半衰期短的药物、改善生理反应以及为患者提供更多便利。然而,皮肤的渗透性给 TDDS 带来了挑战,因为皮肤对大分子和亲水性药物不具渗透性,但对小分子和亲油性药物具有渗透性。为了克服这一障碍,研究人员研究了囊泡系统,如转移体、脂质体、niosomes 和 ethosomes。在这些囊泡系统中,转运体因其可变形性和柔性膜而特别有望用于非侵入性给药。在通过皮肤给药抗癌药物、胰岛素、皮质类固醇、草药和非甾体抗炎药方面,人们对它们进行了广泛的研究。转移体在治疗皮肤癌、改善胰岛素给药、增强皮质类固醇的特定部位给药以及提高中草药的渗透性和治疗效果等方面都有显著疗效。在使用非甾体抗炎药和阿片类药物止痛时,它们也能将副作用降到最低。转移体已被用于透皮免疫和靶向给药,提供特定部位的释放,并将不良反应降至最低。总之,转移体是一种很有前景的透皮给药方法,可用于多种治疗应用:本综述旨在讨论转移体的各种优势和局限性、它们在皮肤上的渗透机制,以及它们在抗癌、抗糖尿病、非甾体抗炎药、草药和透皮免疫等各种药物递送中的应用:方法:我们从 PubMed、Google Scholar 和 ScienceDirect 上搜索数据:在这篇综述中,我们探讨了转移体的各种制备方法及其在抗癌、抗糖尿病、非甾体抗炎药、草药和透皮免疫等各种药物递送中的应用:结论:与其他囊泡系统相比,转运体更灵活,皮肤穿透能力更强,可转运全身性药物,而且更稳定。转移体既能输送亲水性药物,也能输送疏水性药物,因此适用于透皮给药。所开发的转移体凝胶可用于改善经皮肤给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overcoming Skin Barrier with Transfersomes: Opportunities, Challenges, and Applications.

Background: Transdermal drug delivery systems (TDDS) offer several advantages over traditional methods like injections and oral administration, including preventing first-pass metabolism, providing consistent and sustained activity, reducing side effects, enabling the use of short halflife drugs, improving physiological response, and enhancing patient convenience. However, the permeability of skin poses a challenge for TDDS, as it is impermeable to large molecules and hydrophilic drugs but permeable to small molecules and lipophilic medications. To overcome this barrier, researchers have investigated vesicular systems, such as transfersomes, liposomes, niosomes, and ethosomes. Among these vesicular systems, transfersomes are particularly promising for non-invasive drug administration due to their deformability and flexible membrane. They have been extensively studied for delivering anticancer drugs, insulin, corticosteroids, herbal medicines, and NSAIDs through the skin. Transfersomes have demonstrated efficacy in treating skin cancer, improving insulin delivery, enhancing site-specific corticosteroid delivery, and increasing the permeation and therapeutic effects of herbal medicines. They have also been effective in delivering pain relief with minimal side effects using NSAIDs and opioids. Transfersomes have been used for transdermal immunization and targeted drug delivery, offering site-specific release and minimizing adverse effects. Overall, transfersomes are a promising approach for transdermal drug delivery in various therapeutic applications.

Objectives: The aim of the present review is to discuss the various advantages and limitations of transfersomes and their mechanism to penetration across the skin, as well as their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.

Methods: Data we searched from PubMed, Google Scholar, and ScienceDirect.

Results: In this review, we have explored the various methods of preparation of transferosomes and their application for the delivery of various drugs like anticancer, antidiabetic, NSAIDs, herbal drugs, and transdermal immunization.

Conclusion: In comparison to other vesicular systems, transfersomes are more flexible, have greater skin penetration capability, can transport systemic medicines, and are more stable. Transfersomes are capable of delivering both hydrophilic and hydrophobic drugs, making them suitable for transdermal drug delivery. The developed transfersomal gel could be used to improve medicine delivery through the skin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Trends in Nanoparticulate Delivery System for Amygdalin as Potential Therapeutic Herbal Bioactive Agent for Cancer Treatment. Synergistic Antibacterial Effect of ZnO Nanoparticles and Antibiotics against Multidrug-resistant Biofilm Bacteria. Recent Advancement in Inhaled Nano-drug Delivery for Pulmonary, Nasal, and Nose-to-brain Diseases. Emerging Phytochemical Formulations for Management of Rheumatoid Arthritis: A Review. Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1