Afroza Sultana , Md Tawhid Islam Opu , Farruk Ahmed , Md Shafiul Alam
{"title":"利用韦尔奇功率估算从表面肌电信号进行手指运动分类的新型机器学习算法","authors":"Afroza Sultana , Md Tawhid Islam Opu , Farruk Ahmed , Md Shafiul Alam","doi":"10.1016/j.health.2023.100296","DOIUrl":null,"url":null,"abstract":"<div><p>Electromyogram (EMG) signal monitoring is an effective method for controlling the movements of a prosthetic limb. The classification of the EMG pattern of various finger motions in upper-arm amputees has drawn much attention in recent years to develop algorithms that provide adequate accuracy. However, due to the complexity of EMG data, movement detection is a challenging task. Therefore, an effective model is needed that can accurately process, analyze, and classify various hand and finger movements. This paper proposes a novel algorithm for processing and classifying 15 finger movements from surface EMG signals based on Welch power estimation from frequency analysis. Five time-domain features are extracted and trained with a machine learning classifier to classify 15 single fingers and combined finger gestures from eight healthy subjects. The experimental results show 92.30 % classification accuracy considering data from eight channels which was improved to 94.15 % after selecting two channels as dominating. For performance evaluation, 10-fold cross-validation is used during classification. We demonstrate an average accuracy of 92.35 % with 25 % test data.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100296"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001636/pdfft?md5=4ed0e07f8bd5d341ea9781566c335c1d&pid=1-s2.0-S2772442523001636-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel machine learning algorithm for finger movement classification from surface electromyogram signals using welch power estimation\",\"authors\":\"Afroza Sultana , Md Tawhid Islam Opu , Farruk Ahmed , Md Shafiul Alam\",\"doi\":\"10.1016/j.health.2023.100296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electromyogram (EMG) signal monitoring is an effective method for controlling the movements of a prosthetic limb. The classification of the EMG pattern of various finger motions in upper-arm amputees has drawn much attention in recent years to develop algorithms that provide adequate accuracy. However, due to the complexity of EMG data, movement detection is a challenging task. Therefore, an effective model is needed that can accurately process, analyze, and classify various hand and finger movements. This paper proposes a novel algorithm for processing and classifying 15 finger movements from surface EMG signals based on Welch power estimation from frequency analysis. Five time-domain features are extracted and trained with a machine learning classifier to classify 15 single fingers and combined finger gestures from eight healthy subjects. The experimental results show 92.30 % classification accuracy considering data from eight channels which was improved to 94.15 % after selecting two channels as dominating. For performance evaluation, 10-fold cross-validation is used during classification. We demonstrate an average accuracy of 92.35 % with 25 % test data.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100296\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001636/pdfft?md5=4ed0e07f8bd5d341ea9781566c335c1d&pid=1-s2.0-S2772442523001636-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel machine learning algorithm for finger movement classification from surface electromyogram signals using welch power estimation
Electromyogram (EMG) signal monitoring is an effective method for controlling the movements of a prosthetic limb. The classification of the EMG pattern of various finger motions in upper-arm amputees has drawn much attention in recent years to develop algorithms that provide adequate accuracy. However, due to the complexity of EMG data, movement detection is a challenging task. Therefore, an effective model is needed that can accurately process, analyze, and classify various hand and finger movements. This paper proposes a novel algorithm for processing and classifying 15 finger movements from surface EMG signals based on Welch power estimation from frequency analysis. Five time-domain features are extracted and trained with a machine learning classifier to classify 15 single fingers and combined finger gestures from eight healthy subjects. The experimental results show 92.30 % classification accuracy considering data from eight channels which was improved to 94.15 % after selecting two channels as dominating. For performance evaluation, 10-fold cross-validation is used during classification. We demonstrate an average accuracy of 92.35 % with 25 % test data.