Haibo Wang , Ge Gao , Mohamed A. Meguid , Yi Pik Cheng , Lulu Zhang
{"title":"利用连续-非连续耦合分析探索与尺寸相关的因素对土工格室加固土壤响应的影响","authors":"Haibo Wang , Ge Gao , Mohamed A. Meguid , Yi Pik Cheng , Lulu Zhang","doi":"10.1016/j.geotexmem.2023.12.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>Size-related factors, such as the dimensions and cell count of geocell<span><span>, play a crucial role in determining the effectiveness of soil reinforcement. In this study, a 3D coupled framework that leverages the strengths<span> of both continuum and discontinuum methods was developed to investigate the influence of pocket size and multi-cell configuration on geocell-reinforced soils. To unveil the impact of size-related factors on soil-geocell interactions, reinforced soils containing various geocell configurations (single large-sized cell, multiple small-sized cells), as well as geocell-free soils subjected to increasing levels of confining pressure were extensively examined. This thorough investigation aimed to establish correlations between macroscopic responses and underlying micromechanical mechanisms. Our findings revealed that the presence of the geocell not only enhances the </span></span>densification<span> of interparticle contacts<span> and reduces the number of floating particles that contribute minimally to load support, but also facilitates the concentration of force chains within the geocell structure. This leads to an increase in elastic stiffness along the loading axis. These observations highlight that the geocell's confining mechanism enhances both the load-carrying capacity and the infill </span></span></span></span>rigidity, thereby preventing lateral soil spreading. In essence, the geocell serves to increase the soil's ability to withstand load and maintain its structural integrity laterally.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 4","pages":"Pages 435-450"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the influence of size-related factors on geocell-reinforced soil response using coupled continuum-discontinuum analysis\",\"authors\":\"Haibo Wang , Ge Gao , Mohamed A. Meguid , Yi Pik Cheng , Lulu Zhang\",\"doi\":\"10.1016/j.geotexmem.2023.12.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Size-related factors, such as the dimensions and cell count of geocell<span><span>, play a crucial role in determining the effectiveness of soil reinforcement. In this study, a 3D coupled framework that leverages the strengths<span> of both continuum and discontinuum methods was developed to investigate the influence of pocket size and multi-cell configuration on geocell-reinforced soils. To unveil the impact of size-related factors on soil-geocell interactions, reinforced soils containing various geocell configurations (single large-sized cell, multiple small-sized cells), as well as geocell-free soils subjected to increasing levels of confining pressure were extensively examined. This thorough investigation aimed to establish correlations between macroscopic responses and underlying micromechanical mechanisms. Our findings revealed that the presence of the geocell not only enhances the </span></span>densification<span> of interparticle contacts<span> and reduces the number of floating particles that contribute minimally to load support, but also facilitates the concentration of force chains within the geocell structure. This leads to an increase in elastic stiffness along the loading axis. These observations highlight that the geocell's confining mechanism enhances both the load-carrying capacity and the infill </span></span></span></span>rigidity, thereby preventing lateral soil spreading. In essence, the geocell serves to increase the soil's ability to withstand load and maintain its structural integrity laterally.</p></div>\",\"PeriodicalId\":55096,\"journal\":{\"name\":\"Geotextiles and Geomembranes\",\"volume\":\"52 4\",\"pages\":\"Pages 435-450\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geotextiles and Geomembranes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266114423001139\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114423001139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Exploring the influence of size-related factors on geocell-reinforced soil response using coupled continuum-discontinuum analysis
Size-related factors, such as the dimensions and cell count of geocell, play a crucial role in determining the effectiveness of soil reinforcement. In this study, a 3D coupled framework that leverages the strengths of both continuum and discontinuum methods was developed to investigate the influence of pocket size and multi-cell configuration on geocell-reinforced soils. To unveil the impact of size-related factors on soil-geocell interactions, reinforced soils containing various geocell configurations (single large-sized cell, multiple small-sized cells), as well as geocell-free soils subjected to increasing levels of confining pressure were extensively examined. This thorough investigation aimed to establish correlations between macroscopic responses and underlying micromechanical mechanisms. Our findings revealed that the presence of the geocell not only enhances the densification of interparticle contacts and reduces the number of floating particles that contribute minimally to load support, but also facilitates the concentration of force chains within the geocell structure. This leads to an increase in elastic stiffness along the loading axis. These observations highlight that the geocell's confining mechanism enhances both the load-carrying capacity and the infill rigidity, thereby preventing lateral soil spreading. In essence, the geocell serves to increase the soil's ability to withstand load and maintain its structural integrity laterally.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.