{"title":"X 射线辐照诱导铁电随机存取存储器中 HZO 铁电层的相变","authors":"Chung-Wei Wu, Po-Hsun Chen, Ting-Chang Chang, Yung-Fang Tan, Shih-Kai Lin, Yu-Hsuan Yeh, Yong-Ci Zhang, Hsin-Ni Lin, Kai-Chun Chang, Chien-Hung Yeh, Simon Sze","doi":"10.1088/1361-6641/ad1130","DOIUrl":null,"url":null,"abstract":"In this study, electrical measurements on ferroelectric random-access memory by prior x-ray irradiation are conducted. Compared with an unirradiated device, parameters such as current leakage and remnant polarization of the irradiated device were unexpectedly improved. Besides, better reliabilities including the number of endurance times and retention time have also been demonstrated. To clarify the underlying physical mechanism, the electrical properties are analyzed. The current–voltage curve (<italic toggle=\"yes\">I–V</italic>) implies a change in the grain size in the ferroelectric layer (FL), and the capacitance–voltage curve (<italic toggle=\"yes\">C</italic>–<italic toggle=\"yes\">V</italic>) profile indicates that the FL undergoes a phase change during irradiation. Finally, according to the electrical results, a physical model is proposed as an explanation.","PeriodicalId":21585,"journal":{"name":"Semiconductor Science and Technology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase transformation on HZO ferroelectric layer in ferroelectric random-access memory induced by x-ray irradiation\",\"authors\":\"Chung-Wei Wu, Po-Hsun Chen, Ting-Chang Chang, Yung-Fang Tan, Shih-Kai Lin, Yu-Hsuan Yeh, Yong-Ci Zhang, Hsin-Ni Lin, Kai-Chun Chang, Chien-Hung Yeh, Simon Sze\",\"doi\":\"10.1088/1361-6641/ad1130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, electrical measurements on ferroelectric random-access memory by prior x-ray irradiation are conducted. Compared with an unirradiated device, parameters such as current leakage and remnant polarization of the irradiated device were unexpectedly improved. Besides, better reliabilities including the number of endurance times and retention time have also been demonstrated. To clarify the underlying physical mechanism, the electrical properties are analyzed. The current–voltage curve (<italic toggle=\\\"yes\\\">I–V</italic>) implies a change in the grain size in the ferroelectric layer (FL), and the capacitance–voltage curve (<italic toggle=\\\"yes\\\">C</italic>–<italic toggle=\\\"yes\\\">V</italic>) profile indicates that the FL undergoes a phase change during irradiation. Finally, according to the electrical results, a physical model is proposed as an explanation.\",\"PeriodicalId\":21585,\"journal\":{\"name\":\"Semiconductor Science and Technology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad1130\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad1130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本研究对铁电随机存取存储器进行了预先 X 射线辐照的电学测量。与未经过辐照的器件相比,经过辐照的器件的漏电流和残余极化等参数得到了意想不到的改善。此外,耐久次数和保持时间等可靠性也得到了改善。为了弄清潜在的物理机制,我们对其电气特性进行了分析。电流-电压曲线(I-V)表明铁电层(FL)的晶粒尺寸发生了变化,而电容-电压曲线(C-V)则表明 FL 在辐照过程中发生了相变。最后,根据电学结果,提出了一个物理模型作为解释。
Phase transformation on HZO ferroelectric layer in ferroelectric random-access memory induced by x-ray irradiation
In this study, electrical measurements on ferroelectric random-access memory by prior x-ray irradiation are conducted. Compared with an unirradiated device, parameters such as current leakage and remnant polarization of the irradiated device were unexpectedly improved. Besides, better reliabilities including the number of endurance times and retention time have also been demonstrated. To clarify the underlying physical mechanism, the electrical properties are analyzed. The current–voltage curve (I–V) implies a change in the grain size in the ferroelectric layer (FL), and the capacitance–voltage curve (C–V) profile indicates that the FL undergoes a phase change during irradiation. Finally, according to the electrical results, a physical model is proposed as an explanation.
期刊介绍:
Devoted to semiconductor research, Semiconductor Science and Technology''s multidisciplinary approach reflects the far-reaching nature of this topic.
The scope of the journal covers fundamental and applied experimental and theoretical studies of the properties of non-organic, organic and oxide semiconductors, their interfaces and devices, including:
fundamental properties
materials and nanostructures
devices and applications
fabrication and processing
new analytical techniques
simulation
emerging fields:
materials and devices for quantum technologies
hybrid structures and devices
2D and topological materials
metamaterials
semiconductors for energy
flexible electronics.