通过生化弛豫振荡器控制反应模块的发生顺序

Xiaopeng Shi, Chuanhou Gao, Denis Dochain
{"title":"通过生化弛豫振荡器控制反应模块的发生顺序","authors":"Xiaopeng Shi, Chuanhou Gao, Denis Dochain","doi":"arxiv-2401.02061","DOIUrl":null,"url":null,"abstract":"Embedding sequential computations in biochemical environments is challenging\nbecause the computations are carried out by chemical reactions, which are\ninherently disordered. In this paper we apply modular design to specific\ncalculations through chemical reactions and provide a design scheme of\nbiochemical oscillator models in order to generate periodical species for the\norder regulation of these reaction modules. We take the case of arbitrary\nmulti-module regulation into consideration, analyze the main errors in the\nregulation process under \\textit{mass-action kinetics} and demonstrate our\ndesign scheme under existing synthetic biochemical oscillator models.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"77 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlling the occurrence sequence of reaction modules through biochemical relaxation oscillators\",\"authors\":\"Xiaopeng Shi, Chuanhou Gao, Denis Dochain\",\"doi\":\"arxiv-2401.02061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedding sequential computations in biochemical environments is challenging\\nbecause the computations are carried out by chemical reactions, which are\\ninherently disordered. In this paper we apply modular design to specific\\ncalculations through chemical reactions and provide a design scheme of\\nbiochemical oscillator models in order to generate periodical species for the\\norder regulation of these reaction modules. We take the case of arbitrary\\nmulti-module regulation into consideration, analyze the main errors in the\\nregulation process under \\\\textit{mass-action kinetics} and demonstrate our\\ndesign scheme under existing synthetic biochemical oscillator models.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.02061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.02061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在生化环境中嵌入顺序计算具有挑战性,因为计算是通过化学反应进行的,而化学反应本身是无序的。在本文中,我们将模块化设计应用于通过化学反应进行的特定计算,并提供了一种生化振荡器模型设计方案,以便为这些反应模块的顺序调节生成周期物种。我们考虑了任意多模块调控的情况,分析了textit{mass-action kinetics}下调控过程的主要误差,并在现有合成生化振荡器模型下演示了我们的设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling the occurrence sequence of reaction modules through biochemical relaxation oscillators
Embedding sequential computations in biochemical environments is challenging because the computations are carried out by chemical reactions, which are inherently disordered. In this paper we apply modular design to specific calculations through chemical reactions and provide a design scheme of biochemical oscillator models in order to generate periodical species for the order regulation of these reaction modules. We take the case of arbitrary multi-module regulation into consideration, analyze the main errors in the regulation process under \textit{mass-action kinetics} and demonstrate our design scheme under existing synthetic biochemical oscillator models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-variable control to mitigate loads in CRISPRa networks Some bounds on positive equilibria in mass action networks Non-explosivity of endotactic stochastic reaction systems Limits on the computational expressivity of non-equilibrium biophysical processes When lowering temperature, the in vivo circadian clock in cyanobacteria follows and surpasses the in vitro protein clock trough the Hopf bifurcation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1