贝叶斯最小畸变混合水平分割图设计

Pub Date : 2024-01-03 DOI:10.1007/s00184-023-00937-x
Hui Li, Min-Qian Liu, Jinyu Yang
{"title":"贝叶斯最小畸变混合水平分割图设计","authors":"Hui Li, Min-Qian Liu, Jinyu Yang","doi":"10.1007/s00184-023-00937-x","DOIUrl":null,"url":null,"abstract":"<p>Many industrial experiments involve factors with levels more difficult to change or control than others, which leads to the development of two-level fractional factorial split-plot (FFSP) designs. Recently, mixed-level FFSP designs were proposed due to the requirement of different-level factors. In this paper, we generalize the Bayesian optimal criterion for mixed two- and four-level FFSP designs, and then provide Bayesian minimum aberration (MA) criterion to rank FFSP designs. Bayesian MA criterion can give a natural ordering for the effects involving two-level factors and three components of a four-level factor. We also discuss the relationship between the Bayesian optimal and Bayesian MA criteria. Furthermore, we consider the designs with both qualitative and quantitative factors.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian minimum aberration mixed-level split-plot designs\",\"authors\":\"Hui Li, Min-Qian Liu, Jinyu Yang\",\"doi\":\"10.1007/s00184-023-00937-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many industrial experiments involve factors with levels more difficult to change or control than others, which leads to the development of two-level fractional factorial split-plot (FFSP) designs. Recently, mixed-level FFSP designs were proposed due to the requirement of different-level factors. In this paper, we generalize the Bayesian optimal criterion for mixed two- and four-level FFSP designs, and then provide Bayesian minimum aberration (MA) criterion to rank FFSP designs. Bayesian MA criterion can give a natural ordering for the effects involving two-level factors and three components of a four-level factor. We also discuss the relationship between the Bayesian optimal and Bayesian MA criteria. Furthermore, we consider the designs with both qualitative and quantitative factors.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00184-023-00937-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00184-023-00937-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多工业实验涉及的因素水平比其他因素更难改变或控制,这就导致了两水平分数因子分割图(FFSP)设计的发展。最近,由于对不同水平因子的要求,又提出了混合水平 FFSP 设计。本文将贝叶斯最优准则推广到混合两级和四级 FFSP 设计中,然后提供贝叶斯最小畸变(MA)准则对 FFSP 设计进行排序。贝叶斯最小畸变准则可以为涉及两级因子和四级因子中三个成分的效应给出一个自然排序。我们还讨论了贝叶斯最优准则和贝叶斯 MA 准则之间的关系。此外,我们还考虑了具有定性和定量因素的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Bayesian minimum aberration mixed-level split-plot designs

Many industrial experiments involve factors with levels more difficult to change or control than others, which leads to the development of two-level fractional factorial split-plot (FFSP) designs. Recently, mixed-level FFSP designs were proposed due to the requirement of different-level factors. In this paper, we generalize the Bayesian optimal criterion for mixed two- and four-level FFSP designs, and then provide Bayesian minimum aberration (MA) criterion to rank FFSP designs. Bayesian MA criterion can give a natural ordering for the effects involving two-level factors and three components of a four-level factor. We also discuss the relationship between the Bayesian optimal and Bayesian MA criteria. Furthermore, we consider the designs with both qualitative and quantitative factors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1