通过局部梯度计算实现拜占庭弹性梯度编码

Christoph Hofmeister, Luis Maßny, Eitan Yaakobi, Rawad Bitar
{"title":"通过局部梯度计算实现拜占庭弹性梯度编码","authors":"Christoph Hofmeister, Luis Maßny, Eitan Yaakobi, Rawad Bitar","doi":"arxiv-2401.02380","DOIUrl":null,"url":null,"abstract":"We consider gradient coding in the presence of an adversary controlling\nso-called malicious workers trying to corrupt the computations. Previous works\npropose the use of MDS codes to treat the responses from malicious workers as\nerrors and correct them using the error-correction properties of the code. This\ncomes at the expense of increasing the replication, i.e., the number of workers\neach partial gradient is computed by. In this work, we propose a way to reduce\nthe replication to $s+1$ instead of $2s+1$ in the presence of $s$ malicious\nworkers. Our method detects erroneous inputs from the malicious workers,\ntransforming them into erasures. This comes at the expense of $s$ additional\nlocal computations at the main node and additional rounds of light\ncommunication between the main node and the workers. We define a general\nframework and give fundamental limits for fractional repetition data\nallocations. Our scheme is optimal in terms of replication and local\ncomputation and incurs a communication cost that is asymptotically, in the size\nof the dataset, a multiplicative factor away from the derived bound. We\nfurthermore show how additional redundancy can be exploited to reduce the\nnumber of local computations and communication cost, or, alternatively,\ntolerate straggling workers.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"117 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Byzantine-Resilient Gradient Coding through Local Gradient Computations\",\"authors\":\"Christoph Hofmeister, Luis Maßny, Eitan Yaakobi, Rawad Bitar\",\"doi\":\"arxiv-2401.02380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider gradient coding in the presence of an adversary controlling\\nso-called malicious workers trying to corrupt the computations. Previous works\\npropose the use of MDS codes to treat the responses from malicious workers as\\nerrors and correct them using the error-correction properties of the code. This\\ncomes at the expense of increasing the replication, i.e., the number of workers\\neach partial gradient is computed by. In this work, we propose a way to reduce\\nthe replication to $s+1$ instead of $2s+1$ in the presence of $s$ malicious\\nworkers. Our method detects erroneous inputs from the malicious workers,\\ntransforming them into erasures. This comes at the expense of $s$ additional\\nlocal computations at the main node and additional rounds of light\\ncommunication between the main node and the workers. We define a general\\nframework and give fundamental limits for fractional repetition data\\nallocations. Our scheme is optimal in terms of replication and local\\ncomputation and incurs a communication cost that is asymptotically, in the size\\nof the dataset, a multiplicative factor away from the derived bound. We\\nfurthermore show how additional redundancy can be exploited to reduce the\\nnumber of local computations and communication cost, or, alternatively,\\ntolerate straggling workers.\",\"PeriodicalId\":501433,\"journal\":{\"name\":\"arXiv - CS - Information Theory\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.02380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.02380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在对手控制所谓的恶意工作者试图破坏计算的情况下进行梯度编码的问题。之前的研究提出使用 MDS 代码将恶意工作者的响应视为错误,并利用代码的纠错特性对其进行纠正。但这样做的代价是增加复制量,即每个部分梯度由多少个工作程序计算。在这项工作中,我们提出了一种方法,在存在 $s$ 恶意工作者的情况下,将复制量减少到 $s+1$,而不是 $2s+1$。我们的方法可以检测到恶意工作人员的错误输入,并将其转化为擦除。这样做的代价是,主节点需要额外进行 $s$ 的本地计算,主节点和工人之间还需要额外的轻量级通信。我们定义了一个通用框架,并给出了分数重复数据分配的基本限制。我们的方案在复制和本地计算方面都是最优的,而且产生的通信成本在数据集大小上与推导出的限值渐进地相差一个乘法因子。此外,我们还展示了如何利用额外的冗余来减少本地计算的次数和通信成本,或者如何容忍散兵游勇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Byzantine-Resilient Gradient Coding through Local Gradient Computations
We consider gradient coding in the presence of an adversary controlling so-called malicious workers trying to corrupt the computations. Previous works propose the use of MDS codes to treat the responses from malicious workers as errors and correct them using the error-correction properties of the code. This comes at the expense of increasing the replication, i.e., the number of workers each partial gradient is computed by. In this work, we propose a way to reduce the replication to $s+1$ instead of $2s+1$ in the presence of $s$ malicious workers. Our method detects erroneous inputs from the malicious workers, transforming them into erasures. This comes at the expense of $s$ additional local computations at the main node and additional rounds of light communication between the main node and the workers. We define a general framework and give fundamental limits for fractional repetition data allocations. Our scheme is optimal in terms of replication and local computation and incurs a communication cost that is asymptotically, in the size of the dataset, a multiplicative factor away from the derived bound. We furthermore show how additional redundancy can be exploited to reduce the number of local computations and communication cost, or, alternatively, tolerate straggling workers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO CSI Feedback using Channel Prediction: How to Avoid Machine Learning at UE? Reverse em-problem based on Bregman divergence and its application to classical and quantum information theory From "um" to "yeah": Producing, predicting, and regulating information flow in human conversation Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission Semantics-Empowered Space-Air-Ground-Sea Integrated Network: New Paradigm, Frameworks, and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1