{"title":"氢作为能源载体:制约因素和机遇","authors":"Nicola Armaroli, Elisa Bandini, Andrea Barbieri","doi":"10.1515/pac-2023-0801","DOIUrl":null,"url":null,"abstract":"The use of molecular hydrogen (H<jats:sub>2</jats:sub>) in the energy sector faces several technical and economic hurdles related to its chemical and physical properties, particularly volumetric energy density and mass. The production, transport and storage of hydrogen, both in gas and liquid form, are intrinsically inefficient and expensive. Moreover, the mass production of green hydrogen would preferably use surpluses of renewable electricity that will be largely available not before the next decade. To fulfill the great potential of H<jats:sub>2</jats:sub> in the decarbonization of the global economy – which should greatly accelerate – applications must be carefully selected, favoring for instance hard-to-abate sectors with respect to low-temperature residential heating or long-distance transportation versus light duty vehicles. In the meantime, research on production, transportation and storage of H<jats:sub>2</jats:sub> must substantially leap forward.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":"133 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen as an energy carrier: constraints and opportunities\",\"authors\":\"Nicola Armaroli, Elisa Bandini, Andrea Barbieri\",\"doi\":\"10.1515/pac-2023-0801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of molecular hydrogen (H<jats:sub>2</jats:sub>) in the energy sector faces several technical and economic hurdles related to its chemical and physical properties, particularly volumetric energy density and mass. The production, transport and storage of hydrogen, both in gas and liquid form, are intrinsically inefficient and expensive. Moreover, the mass production of green hydrogen would preferably use surpluses of renewable electricity that will be largely available not before the next decade. To fulfill the great potential of H<jats:sub>2</jats:sub> in the decarbonization of the global economy – which should greatly accelerate – applications must be carefully selected, favoring for instance hard-to-abate sectors with respect to low-temperature residential heating or long-distance transportation versus light duty vehicles. In the meantime, research on production, transportation and storage of H<jats:sub>2</jats:sub> must substantially leap forward.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":\"133 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2023-0801\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2023-0801","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogen as an energy carrier: constraints and opportunities
The use of molecular hydrogen (H2) in the energy sector faces several technical and economic hurdles related to its chemical and physical properties, particularly volumetric energy density and mass. The production, transport and storage of hydrogen, both in gas and liquid form, are intrinsically inefficient and expensive. Moreover, the mass production of green hydrogen would preferably use surpluses of renewable electricity that will be largely available not before the next decade. To fulfill the great potential of H2 in the decarbonization of the global economy – which should greatly accelerate – applications must be carefully selected, favoring for instance hard-to-abate sectors with respect to low-temperature residential heating or long-distance transportation versus light duty vehicles. In the meantime, research on production, transportation and storage of H2 must substantially leap forward.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.