{"title":"大豆(Glycine max (L.) Merr.)的雄激素发生:重要的重新审视","authors":"Ayyagari Ramlal, Sahil Mehta, Aparna Nautiyal, Pooja Baweja, Shivam, Deepshikha Sharma, S. K. Lal, Roshni Vijayan, Dhandapani Raju, Sreeramanan Subramaniam, Ambika Rajendran","doi":"10.1007/s11627-023-10402-z","DOIUrl":null,"url":null,"abstract":"<p><i>Glycine max</i> (L.) Merr. (soybean) is a multi-purpose crop used for both animal and human feed. It is an economically and industrially important crop. It possesses many therapeutical and nutraceutical compounds. Therefore, soybean is referred to as ‘Gold from the soil’. Conventional breeding approaches are laborious and time-consuming. Thus, alternative biotechnological methods, such as <i>in vitro</i> micropropagation, regeneration, and transformation, could be advantageous. Despite the efforts made in the field of soybean micropropagation for haploidy and doubled haploidy, especially androgenesis, the success rate accounts for only approximately 2%. Androgenesis in soybean is lacking primarily due to its recalcitrant nature and differences in the development of microspores within a flower. Haploids and doubled haploids (DHs) have contributed immensely to crop improvement programs. In this review, soybean androgenesis history, production of haploids, and doubled haploids have been highlighted. The factors responsible for the androgenic responses have also been discussed. Furthermore, the review will be helpful in understanding the challenges in the standardization of protocol for the production of haploids and DHs in soybean, which will eventually assist breeding and crop improvement.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit\",\"authors\":\"Ayyagari Ramlal, Sahil Mehta, Aparna Nautiyal, Pooja Baweja, Shivam, Deepshikha Sharma, S. K. Lal, Roshni Vijayan, Dhandapani Raju, Sreeramanan Subramaniam, Ambika Rajendran\",\"doi\":\"10.1007/s11627-023-10402-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Glycine max</i> (L.) Merr. (soybean) is a multi-purpose crop used for both animal and human feed. It is an economically and industrially important crop. It possesses many therapeutical and nutraceutical compounds. Therefore, soybean is referred to as ‘Gold from the soil’. Conventional breeding approaches are laborious and time-consuming. Thus, alternative biotechnological methods, such as <i>in vitro</i> micropropagation, regeneration, and transformation, could be advantageous. Despite the efforts made in the field of soybean micropropagation for haploidy and doubled haploidy, especially androgenesis, the success rate accounts for only approximately 2%. Androgenesis in soybean is lacking primarily due to its recalcitrant nature and differences in the development of microspores within a flower. Haploids and doubled haploids (DHs) have contributed immensely to crop improvement programs. In this review, soybean androgenesis history, production of haploids, and doubled haploids have been highlighted. The factors responsible for the androgenic responses have also been discussed. Furthermore, the review will be helpful in understanding the challenges in the standardization of protocol for the production of haploids and DHs in soybean, which will eventually assist breeding and crop improvement.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11627-023-10402-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11627-023-10402-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
Glycine max (L.) Merr.(大豆)是一种多用途作物,既可用作动物饲料,也可用作人类饲料。它是一种具有重要经济和工业价值的作物。它拥有许多治疗和营养保健化合物。因此,大豆被称为 "土壤中的黄金"。传统的育种方法费时费力。因此,体外微繁殖、再生和转化等替代生物技术方法可能具有优势。尽管在大豆单倍体和双倍单倍体微繁殖领域做出了努力,特别是雄性不育,但成功率仅为 2%左右。大豆缺乏雄性不育的主要原因是其顽固性以及花内小孢子发育的差异。单倍体和双倍单倍体(DHs)为作物改良计划做出了巨大贡献。本综述重点介绍了大豆雄性不育的历史、单倍体和双倍单倍体的生产。还讨论了导致雄性激素反应的因素。此外,该综述还有助于了解大豆单倍体和双倍单倍体生产标准化规程所面临的挑战,这最终将有助于育种和作物改良。
Androgenesis in soybean (Glycine max (L.) Merr.): a critical revisit
Glycine max (L.) Merr. (soybean) is a multi-purpose crop used for both animal and human feed. It is an economically and industrially important crop. It possesses many therapeutical and nutraceutical compounds. Therefore, soybean is referred to as ‘Gold from the soil’. Conventional breeding approaches are laborious and time-consuming. Thus, alternative biotechnological methods, such as in vitro micropropagation, regeneration, and transformation, could be advantageous. Despite the efforts made in the field of soybean micropropagation for haploidy and doubled haploidy, especially androgenesis, the success rate accounts for only approximately 2%. Androgenesis in soybean is lacking primarily due to its recalcitrant nature and differences in the development of microspores within a flower. Haploids and doubled haploids (DHs) have contributed immensely to crop improvement programs. In this review, soybean androgenesis history, production of haploids, and doubled haploids have been highlighted. The factors responsible for the androgenic responses have also been discussed. Furthermore, the review will be helpful in understanding the challenges in the standardization of protocol for the production of haploids and DHs in soybean, which will eventually assist breeding and crop improvement.