{"title":"基于 3D 打印的粗糙节理岩块单轴压缩力学性能实验研究","authors":"Pu Yuan, Aobo Li, Changning Chen, Xuefeng Lu","doi":"10.1515/arh-2023-0114","DOIUrl":null,"url":null,"abstract":"Roughness and inclination are important factors affecting the strength and deformation properties of jointed rock masses. Serrated joint specimens with varying joint roughness coefficient (JRC) and inclination angle were manufactured by 3D printing technique and cement mortar material. Then, uniaxial compression tests were performed for serrated joint specimens. The results show that when inclination angle equals 0° or 90°, the stress–strain curves of serrated joint specimens with various JRC values are basically the same and display a similar variation trend as that of the complete specimen, hence JRC presents a very little impact. When inclination angle varies from 30° to 60°, the stress–strain curves display a significant difference for various JRC values. Both the compressive strength and peak strain increase with the JRC value. With the increase in JRC value, the stress–strain curve exhibits a stress drop point, and with the further increase in JRC value, the stress drop point obviously delays or disappears directly. Variation in uniaxial compressive strength and deformation modulus with inclination angle is approximately U-shape for serrated joint specimens and displays typical anisotropic characteristics. Due to the variation in inclination angles and JRC values, failure modes of serrated joint specimens under uniaxial compression varies from splitting tensile or shear slip failure to compound tensile and shear failure. Rough serrated joint has a strengthening effect on the resistance ability to vertical load, and large roughness can effectively slow down the shear slip failure of jointed rock masses.","PeriodicalId":50738,"journal":{"name":"Applied Rheology","volume":"23 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of uniaxial compressive mechanical properties of rough jointed rock masses based on 3D printing\",\"authors\":\"Pu Yuan, Aobo Li, Changning Chen, Xuefeng Lu\",\"doi\":\"10.1515/arh-2023-0114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Roughness and inclination are important factors affecting the strength and deformation properties of jointed rock masses. Serrated joint specimens with varying joint roughness coefficient (JRC) and inclination angle were manufactured by 3D printing technique and cement mortar material. Then, uniaxial compression tests were performed for serrated joint specimens. The results show that when inclination angle equals 0° or 90°, the stress–strain curves of serrated joint specimens with various JRC values are basically the same and display a similar variation trend as that of the complete specimen, hence JRC presents a very little impact. When inclination angle varies from 30° to 60°, the stress–strain curves display a significant difference for various JRC values. Both the compressive strength and peak strain increase with the JRC value. With the increase in JRC value, the stress–strain curve exhibits a stress drop point, and with the further increase in JRC value, the stress drop point obviously delays or disappears directly. Variation in uniaxial compressive strength and deformation modulus with inclination angle is approximately U-shape for serrated joint specimens and displays typical anisotropic characteristics. Due to the variation in inclination angles and JRC values, failure modes of serrated joint specimens under uniaxial compression varies from splitting tensile or shear slip failure to compound tensile and shear failure. Rough serrated joint has a strengthening effect on the resistance ability to vertical load, and large roughness can effectively slow down the shear slip failure of jointed rock masses.\",\"PeriodicalId\":50738,\"journal\":{\"name\":\"Applied Rheology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/arh-2023-0114\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/arh-2023-0114","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Experimental study of uniaxial compressive mechanical properties of rough jointed rock masses based on 3D printing
Roughness and inclination are important factors affecting the strength and deformation properties of jointed rock masses. Serrated joint specimens with varying joint roughness coefficient (JRC) and inclination angle were manufactured by 3D printing technique and cement mortar material. Then, uniaxial compression tests were performed for serrated joint specimens. The results show that when inclination angle equals 0° or 90°, the stress–strain curves of serrated joint specimens with various JRC values are basically the same and display a similar variation trend as that of the complete specimen, hence JRC presents a very little impact. When inclination angle varies from 30° to 60°, the stress–strain curves display a significant difference for various JRC values. Both the compressive strength and peak strain increase with the JRC value. With the increase in JRC value, the stress–strain curve exhibits a stress drop point, and with the further increase in JRC value, the stress drop point obviously delays or disappears directly. Variation in uniaxial compressive strength and deformation modulus with inclination angle is approximately U-shape for serrated joint specimens and displays typical anisotropic characteristics. Due to the variation in inclination angles and JRC values, failure modes of serrated joint specimens under uniaxial compression varies from splitting tensile or shear slip failure to compound tensile and shear failure. Rough serrated joint has a strengthening effect on the resistance ability to vertical load, and large roughness can effectively slow down the shear slip failure of jointed rock masses.
期刊介绍:
Applied Rheology is a peer-reviewed, open access, electronic journal devoted to the publication in the field of applied rheology. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.