Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi
{"title":"基于人类 iPSC 的慢性阻塞性肺病模型,用于研究疾病机制、预测 SARS-COV-2 的结果和测试预防性免疫疗法。","authors":"Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi","doi":"10.1093/stmcls/sxad094","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":"230-250"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy.\",\"authors\":\"Rania Dagher, Aigul Moldobaeva, Elise Gubbins, Sydney Clark, Mia Madel Alfajaro, Craig B Wilen, Finn Hawkins, Xiaotao Qu, Chia Chien Chiang, Yang Li, Lori Clarke, Yasuhiro Ikeda, Charles Brown, Roland Kolbeck, Qin Ma, Mauricio Rojas, Jonathan L Koff, Mahboobe Ghaedi\",\"doi\":\"10.1093/stmcls/sxad094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.</p>\",\"PeriodicalId\":231,\"journal\":{\"name\":\"STEM CELLS\",\"volume\":\" \",\"pages\":\"230-250\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"STEM CELLS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/stmcls/sxad094\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxad094","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Human iPSC-Based Model of COPD to Investigate Disease Mechanisms, Predict SARS-COV-2 Outcome, and Test Preventive Immunotherapy.
Chronic inflammation and dysregulated repair mechanisms after epithelial damage have been implicated in chronic obstructive pulmonary disease (COPD). However, the lack of ex vivo-models that accurately reflect multicellular lung tissue hinders our understanding of epithelial-mesenchymal interactions in COPD. Through a combination of transcriptomic and proteomic approaches applied to a sophisticated in vitro iPSC-alveolosphere with fibroblasts model, epithelial-mesenchymal crosstalk was explored in COPD and following SARS-CoV-2 infection. These experiments profiled dynamic changes at single-cell level of the SARS-CoV-2-infected alveolar niche that unveiled the complexity of aberrant inflammatory responses, mitochondrial dysfunction, and cell death in COPD, which provides deeper insights into the accentuated tissue damage/inflammation/remodeling observed in patients with SARS-CoV-2 infection. Importantly, this 3D system allowed for the evaluation of ACE2-neutralizing antibodies and confirmed the potency of this therapy to prevent SARS-CoV-2 infection in the alveolar niche. Thus, iPSC-alveolosphere cultured with fibroblasts provides a promising model to investigate disease-specific mechanisms and to develop novel therapeutics.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.