Yunfan Zhu , Fangjie Zheng , Yanji Gong , Deqiang Yin , Yang Liu
{"title":"为颞下颌关节紊乱症患者定制的夹板的生物力学行为:三维有限元分析","authors":"Yunfan Zhu , Fangjie Zheng , Yanji Gong , Deqiang Yin , Yang Liu","doi":"10.1016/j.bbe.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><p>The mechanical overloading of temporomandibular joint (TMJ) is generally linked to temporomandibular disorders (TMD). However, in patients with a typical combination of maxillofacial morphology and occlusal features, the reduction of joint load and treatment with general occlusal splints are often ineffective. This study investigates the biomechanical behavior of the stomatognathic system in a TMD patient with personalized splints by finite element analysis. The therapeutic position, determined based on the intercuspal position, served as the basis for designing personalized customized splints. The design of occlusal contact and splint structure was evaluated in terms of their impact on the maximum stress level in the TMJ and the biting forces on the dentition. The relationship between joint stress and biting force was further examined during treatment with different customized splints. In preoperative case, there was a significant increase in stress level and stress concentration in the medial to posterior band of the articular disc. However, in all customized splint cases, the highest stress area shifted to the intermediate zone and exhibited a decrease. Notably, the bi-splints demonstrated superior ability in relieving overloading and balancing the occlusal force on both sides of the dentition, as verified by clinical treatment. The predictable simulated results offer valuable interactive information regarding TMJ overload, aiding doctors in making better-informed clinical decisions in future.</p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 1","pages":"Pages 83-94"},"PeriodicalIF":5.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical behavior of customized splint for the patient with temporomandibular disorders: A three-dimensional finite element analysis\",\"authors\":\"Yunfan Zhu , Fangjie Zheng , Yanji Gong , Deqiang Yin , Yang Liu\",\"doi\":\"10.1016/j.bbe.2023.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mechanical overloading of temporomandibular joint (TMJ) is generally linked to temporomandibular disorders (TMD). However, in patients with a typical combination of maxillofacial morphology and occlusal features, the reduction of joint load and treatment with general occlusal splints are often ineffective. This study investigates the biomechanical behavior of the stomatognathic system in a TMD patient with personalized splints by finite element analysis. The therapeutic position, determined based on the intercuspal position, served as the basis for designing personalized customized splints. The design of occlusal contact and splint structure was evaluated in terms of their impact on the maximum stress level in the TMJ and the biting forces on the dentition. The relationship between joint stress and biting force was further examined during treatment with different customized splints. In preoperative case, there was a significant increase in stress level and stress concentration in the medial to posterior band of the articular disc. However, in all customized splint cases, the highest stress area shifted to the intermediate zone and exhibited a decrease. Notably, the bi-splints demonstrated superior ability in relieving overloading and balancing the occlusal force on both sides of the dentition, as verified by clinical treatment. The predictable simulated results offer valuable interactive information regarding TMJ overload, aiding doctors in making better-informed clinical decisions in future.</p></div>\",\"PeriodicalId\":55381,\"journal\":{\"name\":\"Biocybernetics and Biomedical Engineering\",\"volume\":\"44 1\",\"pages\":\"Pages 83-94\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biocybernetics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0208521623000797\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521623000797","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomechanical behavior of customized splint for the patient with temporomandibular disorders: A three-dimensional finite element analysis
The mechanical overloading of temporomandibular joint (TMJ) is generally linked to temporomandibular disorders (TMD). However, in patients with a typical combination of maxillofacial morphology and occlusal features, the reduction of joint load and treatment with general occlusal splints are often ineffective. This study investigates the biomechanical behavior of the stomatognathic system in a TMD patient with personalized splints by finite element analysis. The therapeutic position, determined based on the intercuspal position, served as the basis for designing personalized customized splints. The design of occlusal contact and splint structure was evaluated in terms of their impact on the maximum stress level in the TMJ and the biting forces on the dentition. The relationship between joint stress and biting force was further examined during treatment with different customized splints. In preoperative case, there was a significant increase in stress level and stress concentration in the medial to posterior band of the articular disc. However, in all customized splint cases, the highest stress area shifted to the intermediate zone and exhibited a decrease. Notably, the bi-splints demonstrated superior ability in relieving overloading and balancing the occlusal force on both sides of the dentition, as verified by clinical treatment. The predictable simulated results offer valuable interactive information regarding TMJ overload, aiding doctors in making better-informed clinical decisions in future.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.