Mehdi Sharifi, Ali Akbar Alizadeh, Maryam Hamzeh Mivehroud, Siavoush Dastmalchi
{"title":"构建噬菌体载体,并将其应用于靶向给药和细胞成像。","authors":"Mehdi Sharifi, Ali Akbar Alizadeh, Maryam Hamzeh Mivehroud, Siavoush Dastmalchi","doi":"10.1007/s10529-023-03455-y","DOIUrl":null,"url":null,"abstract":"<p><p>There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT<sub>2</sub> phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging.\",\"authors\":\"Mehdi Sharifi, Ali Akbar Alizadeh, Maryam Hamzeh Mivehroud, Siavoush Dastmalchi\",\"doi\":\"10.1007/s10529-023-03455-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT<sub>2</sub> phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10529-023-03455-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10529-023-03455-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging.
There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT2 phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.