{"title":"预测癌症协同药物组合的深度神经网络","authors":"Shiyu Yan, Ding Zheng","doi":"10.1007/s12539-023-00596-6","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of drug combinations presents an opportunity to amplify therapeutic effectiveness while alleviating undesirable side effects. Nevertheless, the extensive array of potential combinations poses challenges in terms of cost and time constraints for experimental screening. Thus, it is crucial to narrow down the search space. Deep learning approaches have gained widespread popularity in predicting synergistic drug combinations tailored for specific cell lines in vitro settings. In the present study, we introduce a novel method termed GTextSyn, which utilizes the integration of gene expression data and chemical structure information for the prediction of synergistic effects in drug combinations. GTextSyn employs a sentence classification model within the domain of Natural Language Processing (NLP), wherein drugs and cell lines are regarded as entities possessing biochemical relevance. Meanwhile, combinations of drug pairs and cell lines are construed as sentences with biochemical relational significance. To assess the efficacy of GTextSyn, we conduct a comparative analysis with alternative deep learning approaches using a standard benchmark dataset. The results from a five-fold cross-validation demonstrate a 49.5% reduction in Mean Square Error (MSE) achieved by GTextSyn, surpassing the performance of the next best method in the regression task. Furthermore, we conduct a comprehensive literature survey on the predicted novel drug combinations and find substantial support from prior experimental studies for many of the combinations identified by GTextSyn.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"218-230"},"PeriodicalIF":3.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Neural Network for Predicting Synergistic Drug Combinations on Cancer.\",\"authors\":\"Shiyu Yan, Ding Zheng\",\"doi\":\"10.1007/s12539-023-00596-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The exploration of drug combinations presents an opportunity to amplify therapeutic effectiveness while alleviating undesirable side effects. Nevertheless, the extensive array of potential combinations poses challenges in terms of cost and time constraints for experimental screening. Thus, it is crucial to narrow down the search space. Deep learning approaches have gained widespread popularity in predicting synergistic drug combinations tailored for specific cell lines in vitro settings. In the present study, we introduce a novel method termed GTextSyn, which utilizes the integration of gene expression data and chemical structure information for the prediction of synergistic effects in drug combinations. GTextSyn employs a sentence classification model within the domain of Natural Language Processing (NLP), wherein drugs and cell lines are regarded as entities possessing biochemical relevance. Meanwhile, combinations of drug pairs and cell lines are construed as sentences with biochemical relational significance. To assess the efficacy of GTextSyn, we conduct a comparative analysis with alternative deep learning approaches using a standard benchmark dataset. The results from a five-fold cross-validation demonstrate a 49.5% reduction in Mean Square Error (MSE) achieved by GTextSyn, surpassing the performance of the next best method in the regression task. Furthermore, we conduct a comprehensive literature survey on the predicted novel drug combinations and find substantial support from prior experimental studies for many of the combinations identified by GTextSyn.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"218-230\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-023-00596-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-023-00596-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A Deep Neural Network for Predicting Synergistic Drug Combinations on Cancer.
The exploration of drug combinations presents an opportunity to amplify therapeutic effectiveness while alleviating undesirable side effects. Nevertheless, the extensive array of potential combinations poses challenges in terms of cost and time constraints for experimental screening. Thus, it is crucial to narrow down the search space. Deep learning approaches have gained widespread popularity in predicting synergistic drug combinations tailored for specific cell lines in vitro settings. In the present study, we introduce a novel method termed GTextSyn, which utilizes the integration of gene expression data and chemical structure information for the prediction of synergistic effects in drug combinations. GTextSyn employs a sentence classification model within the domain of Natural Language Processing (NLP), wherein drugs and cell lines are regarded as entities possessing biochemical relevance. Meanwhile, combinations of drug pairs and cell lines are construed as sentences with biochemical relational significance. To assess the efficacy of GTextSyn, we conduct a comparative analysis with alternative deep learning approaches using a standard benchmark dataset. The results from a five-fold cross-validation demonstrate a 49.5% reduction in Mean Square Error (MSE) achieved by GTextSyn, surpassing the performance of the next best method in the regression task. Furthermore, we conduct a comprehensive literature survey on the predicted novel drug combinations and find substantial support from prior experimental studies for many of the combinations identified by GTextSyn.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.