Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu
{"title":"带有电镀缺陷的硅通孔热变形数值研究","authors":"Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu","doi":"10.1108/mmms-04-2023-0141","DOIUrl":null,"url":null,"abstract":"PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study on thermal deformation of through silicon via with electroplating defect\",\"authors\":\"Chongbin Hou, Yang Qiu, Xingyan Zhao, Shaonan Zheng, Yuan Dong, Qize Zhong, Ting Hu\",\"doi\":\"10.1108/mmms-04-2023-0141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-04-2023-0141\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-04-2023-0141","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A numerical study on thermal deformation of through silicon via with electroplating defect
PurposeBy investigating the thermal-mechanical interaction between the through silicon via (TSV) and the Cu pad, this study aimed to determine the effect of electroplating defects on the upper surface protrusion and internal stress distribution of the TSV at various temperatures and to provide guidelines for the positioning of TSVs and the optimization of the electroplating process.Design/methodology/approachA simplified model that consisted of a TSV (100 µm in diameter and 300 µm in height), a covering Cu pad (2 µm thick) and an internal drop-like electroplating defect (which had various dimensions and locations) was developed. The surface overall deformation and stress distribution of these models under various thermal conditions were analyzed and compared.FindingsThe Cu pad could barely suppress the upper surface protrusion of the TSV if the temperature was below 250 ?. Interfacial delamination started at the collar of the TSV at about 250 ? and became increasingly pronounced at higher temperatures. The electroplating defect constantly experienced the highest level of strain and stress during the temperature increase, despite its geometry or location. But as its radius expanded or its distance to the upper surface increased, the overall deformation of the upper surface and the stress concentration at the collar of the TSV showed a downward trend.Originality/valuePrevious studies have not examined the influence of the electroplating void on the thermal behavior of the TSV. However, with the proposed methodology, the strain and stress distribution of the TSV under different conditions in terms of temperature, dimension and location of the electroplating void were thoroughly investigated, which might be beneficial to the positioning of TSVs and the optimization of the electroplating process.