{"title":"肠道微生物组与 COVID-19 严重程度之间的关系:肠道微生物群产生的 TMAO 的潜在作用","authors":"Milad Shahini Shams Abadi, Rozita Khodashahi, Mohsen Aliakbarian, Fatemeh Beiraghdar, Mohammad-Hassan Arjmand","doi":"10.5812/archcid-140346","DOIUrl":null,"url":null,"abstract":"Context: The COVID-19 pandemic has had profound impacts on public health, resulting in nearly 1 million deaths. Emerging evidence suggests an association between certain metabolites produced by gut microbiota and potential alterations in the severity of infection. Trimethylamine N-oxide (TMAO) is a waste metabolite generated by gut microbes from dietary choline and betaine. Evidence Acquisition: Several investigations have indicated an association between serum TMAO concentrations and the development of inflammation and thrombosis. Trimethylamine N-oxide, produced by the gut microbiome in a state of dysbiosis, upregulates various molecular mechanisms, such as the nuclear factor kappa (NF-kB) molecular pathway, and promotes the expression of scavenger receptors (SRs) on the surfaces of macrophages, leading to foam cell formation and inflammation. High levels of TMAO have been shown to induce the expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) while reducing the expression of anti-inflammatory cytokines such as interleukin-10 (IL-10). Additionally, gut-derived TMAO enhances platelet aggregation and adhesion to collagen, increasing the risk of thrombosis. Conclusions: Understanding the association between gut microbiome compositions such as gut TMAO and their effects on SARS-CoV-19 infection progression helps to control disease severity. In this review, we presented a hypothesis that the gut TMAO has the potential to increase COVID-19 disease severity.","PeriodicalId":51793,"journal":{"name":"Archives of Clinical Infectious Diseases","volume":"23 6","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Association Between the Gut Microbiome and COVID-19 Severity: The Potential Role of TMAO Produced by the Gut Microbiome\",\"authors\":\"Milad Shahini Shams Abadi, Rozita Khodashahi, Mohsen Aliakbarian, Fatemeh Beiraghdar, Mohammad-Hassan Arjmand\",\"doi\":\"10.5812/archcid-140346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: The COVID-19 pandemic has had profound impacts on public health, resulting in nearly 1 million deaths. Emerging evidence suggests an association between certain metabolites produced by gut microbiota and potential alterations in the severity of infection. Trimethylamine N-oxide (TMAO) is a waste metabolite generated by gut microbes from dietary choline and betaine. Evidence Acquisition: Several investigations have indicated an association between serum TMAO concentrations and the development of inflammation and thrombosis. Trimethylamine N-oxide, produced by the gut microbiome in a state of dysbiosis, upregulates various molecular mechanisms, such as the nuclear factor kappa (NF-kB) molecular pathway, and promotes the expression of scavenger receptors (SRs) on the surfaces of macrophages, leading to foam cell formation and inflammation. High levels of TMAO have been shown to induce the expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) while reducing the expression of anti-inflammatory cytokines such as interleukin-10 (IL-10). Additionally, gut-derived TMAO enhances platelet aggregation and adhesion to collagen, increasing the risk of thrombosis. Conclusions: Understanding the association between gut microbiome compositions such as gut TMAO and their effects on SARS-CoV-19 infection progression helps to control disease severity. In this review, we presented a hypothesis that the gut TMAO has the potential to increase COVID-19 disease severity.\",\"PeriodicalId\":51793,\"journal\":{\"name\":\"Archives of Clinical Infectious Diseases\",\"volume\":\"23 6\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Clinical Infectious Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/archcid-140346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Clinical Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/archcid-140346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
The Association Between the Gut Microbiome and COVID-19 Severity: The Potential Role of TMAO Produced by the Gut Microbiome
Context: The COVID-19 pandemic has had profound impacts on public health, resulting in nearly 1 million deaths. Emerging evidence suggests an association between certain metabolites produced by gut microbiota and potential alterations in the severity of infection. Trimethylamine N-oxide (TMAO) is a waste metabolite generated by gut microbes from dietary choline and betaine. Evidence Acquisition: Several investigations have indicated an association between serum TMAO concentrations and the development of inflammation and thrombosis. Trimethylamine N-oxide, produced by the gut microbiome in a state of dysbiosis, upregulates various molecular mechanisms, such as the nuclear factor kappa (NF-kB) molecular pathway, and promotes the expression of scavenger receptors (SRs) on the surfaces of macrophages, leading to foam cell formation and inflammation. High levels of TMAO have been shown to induce the expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin 1β (IL-1β) while reducing the expression of anti-inflammatory cytokines such as interleukin-10 (IL-10). Additionally, gut-derived TMAO enhances platelet aggregation and adhesion to collagen, increasing the risk of thrombosis. Conclusions: Understanding the association between gut microbiome compositions such as gut TMAO and their effects on SARS-CoV-19 infection progression helps to control disease severity. In this review, we presented a hypothesis that the gut TMAO has the potential to increase COVID-19 disease severity.
期刊介绍:
Archives of Clinical Infectious Diseases is a peer-reviewed multi-disciplinary medical publication, scheduled to appear quarterly serving as a means for scientific information exchange in the international medical forum. The journal particularly welcomes contributions relevant to the Middle-East region and publishes biomedical experiences and clinical investigations on prevalent infectious diseases in the region as well as analysis of factors that may modulate the incidence, course, and management of infectious diseases and pertinent medical problems in the Middle East.