使用两个辅助变量的修正回归类型估计器

Vyas Dubey, Yeesha Verma
{"title":"使用两个辅助变量的修正回归类型估计器","authors":"Vyas Dubey, Yeesha Verma","doi":"10.52228/jrub.2023-36-2-3","DOIUrl":null,"url":null,"abstract":"In this paper, a modified regression type estimator has been proposed for estimating population mean using two auxiliary variables under simple random sampling. The optimum properties of proposed estimator is determined and we find that the proposed estimator is more efficient than the Desraj (1965) and Srivastva (1967). Empirical studies have also done to demonstrate the efficiency of the proposed estimator.","PeriodicalId":17214,"journal":{"name":"Journal of Ravishankar University (PART-B)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified Regression Type Estimator Using Two Auxiliary Variables\",\"authors\":\"Vyas Dubey, Yeesha Verma\",\"doi\":\"10.52228/jrub.2023-36-2-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a modified regression type estimator has been proposed for estimating population mean using two auxiliary variables under simple random sampling. The optimum properties of proposed estimator is determined and we find that the proposed estimator is more efficient than the Desraj (1965) and Srivastva (1967). Empirical studies have also done to demonstrate the efficiency of the proposed estimator.\",\"PeriodicalId\":17214,\"journal\":{\"name\":\"Journal of Ravishankar University (PART-B)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ravishankar University (PART-B)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52228/jrub.2023-36-2-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ravishankar University (PART-B)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52228/jrub.2023-36-2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种改进的回归型估计器,用于在简单随机抽样条件下使用两个辅助变量估计总体均值。本文确定了所提估计器的最佳属性,并发现所提估计器比 Desraj (1965) 和 Srivastva (1967) 更有效。我们还进行了实证研究,以证明所提估计器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Regression Type Estimator Using Two Auxiliary Variables
In this paper, a modified regression type estimator has been proposed for estimating population mean using two auxiliary variables under simple random sampling. The optimum properties of proposed estimator is determined and we find that the proposed estimator is more efficient than the Desraj (1965) and Srivastva (1967). Empirical studies have also done to demonstrate the efficiency of the proposed estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microemulsion as Novel Drug Delivery for Fungal Eye Infection Basic and Advanced Logical Concept Derived from Surface Enhanced Infrared Spectroscopy (SEIRS) as Sensing Probe for Analysis of Chemical Species: A Brief Review Soil Erosion Risk Estimation by using Semi Empirical RUSLE model: A case study of Maniyari Basin, Chhattisgarh Studies on the Interaction of Imidazolium Ionic Liquids with Human Serum Albumin A Comprehensive Review of a particular Skin Injury: Pathogenesis, triggers, and current Treatment Options
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1