H. V. Nguyen, D. Le, Long Quoc Nguyen, Tomasz Lipecki
{"title":"利用人工神经网络预测地下采矿活动造成的道路沉降","authors":"H. V. Nguyen, D. Le, Long Quoc Nguyen, Tomasz Lipecki","doi":"10.29227/im-2023-02-49","DOIUrl":null,"url":null,"abstract":"Osiadanie dróg spowodowane działalnością górniczą stanowi poważny problem na obszarach o intensywnej działalności górnictwa podziemnego. Dlatego też przewidywanie osiadań dróg ma kluczowe znaczenie dla skutecznego zarządzania gruntami i planowania infrastruktury. W artykule zastosowano sztuczną sieć neuronowa (ANN) do przewidywania osiadań dróg spowodowanych podziemną działalnością górniczą w Wietnamie. Model SSN zaproponowany w badaniu to przyjęto w oparciu o rekurencyjny, wieloetapowy proces predykcji, w którym dodawana jest wartość przewidywana z poprzedniego kroku do szeregu czasowego, aby przewidzieć następną wartość. Cały zbiór danych obejmujący 12 mierzonych okresów obejmujący 12 miesięcy z 1-miesięcznym czasem powtarzania jest podzielony na zbiór uczący dla pierwszych 9 mierzonych okresów i zbiór testowy dla ostatnich 3 mierzonych okresów. Walidacja krzyżowa K-krotna jest najpierw zastosowany do zbioru uczącego w celu określenia najlepszych hiperparametrów modelu, które następnie wykorzystuje się do przewidywania osiadania gruntu.Błędy bezwzględne prognozowanego osiadania drogi zależą od odstępu czasu pomiędzy ostatnią zmierzonym czasem a czasem przewidywanym. Błędy te w dziesiątym miesiącu dla trzech badanych punktów wynoszą 3,0%, 0,1% i 0,1% i wzrastają do 4,8%, 3,3%, i 1,5% w jedenastym miesiącu oraz 7,2%, 2,5% i 1,3% w dwunastym miesiącu. Stwierdzono, że błędy bezwzględne są niewielkie. Wykazano, że proponowana w tym badaniu metoda wykorzystująca SSN może zapewnić dobre przewidywanie czasowe osiadań dróg na terenach górniczych.","PeriodicalId":14535,"journal":{"name":"Inżynieria Mineralna","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Przewidywanie osiadania dróg spowodowanego podziemną działalnością górniczą za pomocą sztucznych sieci neuronowych\",\"authors\":\"H. V. Nguyen, D. Le, Long Quoc Nguyen, Tomasz Lipecki\",\"doi\":\"10.29227/im-2023-02-49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Osiadanie dróg spowodowane działalnością górniczą stanowi poważny problem na obszarach o intensywnej działalności górnictwa podziemnego. Dlatego też przewidywanie osiadań dróg ma kluczowe znaczenie dla skutecznego zarządzania gruntami i planowania infrastruktury. W artykule zastosowano sztuczną sieć neuronowa (ANN) do przewidywania osiadań dróg spowodowanych podziemną działalnością górniczą w Wietnamie. Model SSN zaproponowany w badaniu to przyjęto w oparciu o rekurencyjny, wieloetapowy proces predykcji, w którym dodawana jest wartość przewidywana z poprzedniego kroku do szeregu czasowego, aby przewidzieć następną wartość. Cały zbiór danych obejmujący 12 mierzonych okresów obejmujący 12 miesięcy z 1-miesięcznym czasem powtarzania jest podzielony na zbiór uczący dla pierwszych 9 mierzonych okresów i zbiór testowy dla ostatnich 3 mierzonych okresów. Walidacja krzyżowa K-krotna jest najpierw zastosowany do zbioru uczącego w celu określenia najlepszych hiperparametrów modelu, które następnie wykorzystuje się do przewidywania osiadania gruntu.Błędy bezwzględne prognozowanego osiadania drogi zależą od odstępu czasu pomiędzy ostatnią zmierzonym czasem a czasem przewidywanym. Błędy te w dziesiątym miesiącu dla trzech badanych punktów wynoszą 3,0%, 0,1% i 0,1% i wzrastają do 4,8%, 3,3%, i 1,5% w jedenastym miesiącu oraz 7,2%, 2,5% i 1,3% w dwunastym miesiącu. Stwierdzono, że błędy bezwzględne są niewielkie. Wykazano, że proponowana w tym badaniu metoda wykorzystująca SSN może zapewnić dobre przewidywanie czasowe osiadań dróg na terenach górniczych.\",\"PeriodicalId\":14535,\"journal\":{\"name\":\"Inżynieria Mineralna\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inżynieria Mineralna\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29227/im-2023-02-49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inżynieria Mineralna","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29227/im-2023-02-49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Przewidywanie osiadania dróg spowodowanego podziemną działalnością górniczą za pomocą sztucznych sieci neuronowych
Osiadanie dróg spowodowane działalnością górniczą stanowi poważny problem na obszarach o intensywnej działalności górnictwa podziemnego. Dlatego też przewidywanie osiadań dróg ma kluczowe znaczenie dla skutecznego zarządzania gruntami i planowania infrastruktury. W artykule zastosowano sztuczną sieć neuronowa (ANN) do przewidywania osiadań dróg spowodowanych podziemną działalnością górniczą w Wietnamie. Model SSN zaproponowany w badaniu to przyjęto w oparciu o rekurencyjny, wieloetapowy proces predykcji, w którym dodawana jest wartość przewidywana z poprzedniego kroku do szeregu czasowego, aby przewidzieć następną wartość. Cały zbiór danych obejmujący 12 mierzonych okresów obejmujący 12 miesięcy z 1-miesięcznym czasem powtarzania jest podzielony na zbiór uczący dla pierwszych 9 mierzonych okresów i zbiór testowy dla ostatnich 3 mierzonych okresów. Walidacja krzyżowa K-krotna jest najpierw zastosowany do zbioru uczącego w celu określenia najlepszych hiperparametrów modelu, które następnie wykorzystuje się do przewidywania osiadania gruntu.Błędy bezwzględne prognozowanego osiadania drogi zależą od odstępu czasu pomiędzy ostatnią zmierzonym czasem a czasem przewidywanym. Błędy te w dziesiątym miesiącu dla trzech badanych punktów wynoszą 3,0%, 0,1% i 0,1% i wzrastają do 4,8%, 3,3%, i 1,5% w jedenastym miesiącu oraz 7,2%, 2,5% i 1,3% w dwunastym miesiącu. Stwierdzono, że błędy bezwzględne są niewielkie. Wykazano, że proponowana w tym badaniu metoda wykorzystująca SSN może zapewnić dobre przewidywanie czasowe osiadań dróg na terenach górniczych.