确保网络空间安全:探索 SVM(Poly、Sigmoid)和 ANN 在恶意软件分析中的功效

Musawer Hakimi, Ezatullah Ahmady, Amir Kror Shahidzay, Abdul Wajid Fazil, Mohammad Mustafa Quchi, Rohullah Akbari
{"title":"确保网络空间安全:探索 SVM(Poly、Sigmoid)和 ANN 在恶意软件分析中的功效","authors":"Musawer Hakimi, Ezatullah Ahmady, Amir Kror Shahidzay, Abdul Wajid Fazil, Mohammad Mustafa Quchi, Rohullah Akbari","doi":"10.47760/cognizance.2023.v03i12.017","DOIUrl":null,"url":null,"abstract":"This study presents a comprehensive exploration and comparative analysis of three prominent classification algorithms—Support Vector Machine (SVM) with polynomial and sigmoid kernels, and Artificial Neural Network (ANN)—in the context of malware classification. Leveraging a dataset comprising 5184 samples, including both malware and benign instances, the research systematically evaluates the performance of these algorithms using key metrics such as accuracy, precision, recall, F1 score, and AUC-ROC. The SVM classifier with a polynomial kernel emerges as the top performer, achieving remarkable accuracy (98.08%), precision (98.56%), and recall (97.85%). Its capacity to minimize false positives while maintaining a high true positive rate positions it as a robust tool for accurate malware identification. The sigmoid kernel SVM demonstrates a well-balanced performance, suitable for scenarios requiring a nuanced trade-off between false positives and false negatives. The ANN model, while exhibiting a lower overall accuracy (89.00%), excels in recall (92.61%), showcasing its proficiency in capturing instances of malware. The study underscores the significance of selecting an algorithm aligned with specific application requirements, whether prioritizing precision, recall, or a balanced approach. Furthermore, the research acknowledges the dataset's limitations and calls for future exploration with diverse datasets and additional preprocessing techniques. As cybersecurity threats evolve, the insights provided by this study contribute to the ongoing discourse on developing robust tools for effective malware detection. The findings empower cybersecurity professionals and researchers with valuable considerations for selecting the most suitable classification algorithm in the dynamic landscape of digital security.","PeriodicalId":151974,"journal":{"name":"Cognizance Journal of Multidisciplinary Studies","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Securing Cyberspace: Exploring the Efficacy of SVM (Poly, Sigmoid) and ANN in Malware Analysis\",\"authors\":\"Musawer Hakimi, Ezatullah Ahmady, Amir Kror Shahidzay, Abdul Wajid Fazil, Mohammad Mustafa Quchi, Rohullah Akbari\",\"doi\":\"10.47760/cognizance.2023.v03i12.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a comprehensive exploration and comparative analysis of three prominent classification algorithms—Support Vector Machine (SVM) with polynomial and sigmoid kernels, and Artificial Neural Network (ANN)—in the context of malware classification. Leveraging a dataset comprising 5184 samples, including both malware and benign instances, the research systematically evaluates the performance of these algorithms using key metrics such as accuracy, precision, recall, F1 score, and AUC-ROC. The SVM classifier with a polynomial kernel emerges as the top performer, achieving remarkable accuracy (98.08%), precision (98.56%), and recall (97.85%). Its capacity to minimize false positives while maintaining a high true positive rate positions it as a robust tool for accurate malware identification. The sigmoid kernel SVM demonstrates a well-balanced performance, suitable for scenarios requiring a nuanced trade-off between false positives and false negatives. The ANN model, while exhibiting a lower overall accuracy (89.00%), excels in recall (92.61%), showcasing its proficiency in capturing instances of malware. The study underscores the significance of selecting an algorithm aligned with specific application requirements, whether prioritizing precision, recall, or a balanced approach. Furthermore, the research acknowledges the dataset's limitations and calls for future exploration with diverse datasets and additional preprocessing techniques. As cybersecurity threats evolve, the insights provided by this study contribute to the ongoing discourse on developing robust tools for effective malware detection. The findings empower cybersecurity professionals and researchers with valuable considerations for selecting the most suitable classification algorithm in the dynamic landscape of digital security.\",\"PeriodicalId\":151974,\"journal\":{\"name\":\"Cognizance Journal of Multidisciplinary Studies\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognizance Journal of Multidisciplinary Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47760/cognizance.2023.v03i12.017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognizance Journal of Multidisciplinary Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47760/cognizance.2023.v03i12.017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究以恶意软件分类为背景,对支持向量机(SVM)、人工神经网络(ANN)和多项式核(SVM)这三种著名的分类算法进行了全面的探索和比较分析。研究利用由 5184 个样本(包括恶意软件和良性实例)组成的数据集,使用准确率、精确度、召回率、F1 分数和 AUC-ROC 等关键指标系统地评估了这些算法的性能。采用多项式内核的 SVM 分类器表现最佳,准确率(98.08%)、精确率(98.56%)和召回率(97.85%)都非常出色。它既能最大限度地减少误报,又能保持较高的真阳性率,是准确识别恶意软件的可靠工具。西格玛核 SVM 的性能非常均衡,适用于需要在误报率和误报率之间进行微妙权衡的情况。ANN 模型虽然总体准确率(89.00%)较低,但在召回率(92.61%)方面表现出色,展示了其捕获恶意软件实例的能力。这项研究强调了选择符合特定应用要求的算法的重要性,无论是优先考虑精确度、召回率,还是采用平衡的方法。此外,研究还承认了数据集的局限性,并呼吁今后利用不同的数据集和额外的预处理技术进行探索。随着网络安全威胁的不断发展,本研究提供的见解有助于当前关于开发有效恶意软件检测的强大工具的讨论。研究结果为网络安全专业人员和研究人员在数字安全的动态环境中选择最合适的分类算法提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Securing Cyberspace: Exploring the Efficacy of SVM (Poly, Sigmoid) and ANN in Malware Analysis
This study presents a comprehensive exploration and comparative analysis of three prominent classification algorithms—Support Vector Machine (SVM) with polynomial and sigmoid kernels, and Artificial Neural Network (ANN)—in the context of malware classification. Leveraging a dataset comprising 5184 samples, including both malware and benign instances, the research systematically evaluates the performance of these algorithms using key metrics such as accuracy, precision, recall, F1 score, and AUC-ROC. The SVM classifier with a polynomial kernel emerges as the top performer, achieving remarkable accuracy (98.08%), precision (98.56%), and recall (97.85%). Its capacity to minimize false positives while maintaining a high true positive rate positions it as a robust tool for accurate malware identification. The sigmoid kernel SVM demonstrates a well-balanced performance, suitable for scenarios requiring a nuanced trade-off between false positives and false negatives. The ANN model, while exhibiting a lower overall accuracy (89.00%), excels in recall (92.61%), showcasing its proficiency in capturing instances of malware. The study underscores the significance of selecting an algorithm aligned with specific application requirements, whether prioritizing precision, recall, or a balanced approach. Furthermore, the research acknowledges the dataset's limitations and calls for future exploration with diverse datasets and additional preprocessing techniques. As cybersecurity threats evolve, the insights provided by this study contribute to the ongoing discourse on developing robust tools for effective malware detection. The findings empower cybersecurity professionals and researchers with valuable considerations for selecting the most suitable classification algorithm in the dynamic landscape of digital security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teacher Motivation and Job Satisfaction in Private Primary Schools of Kampala District, Uganda ORGANIZATIONAL COMMITMENT OF JOB ORDER EMPLOYEES IN PHILHEALTH-CAR: INPUT TO STRATEGIC MANAGEMENT From Social Media Engagement to Voting Decisions: Influence of Social Media on Local Election Teacher’s Feedback on Students Motivation and Academic Engagement Integration of Technology in Chemistry Education at University Level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1