J. H. Abdulkareem, Aisha Abdulkadir, Tse Terna James
{"title":"压实能对不同有机质来源改良土壤的部分物理和水力特性的影响","authors":"J. H. Abdulkareem, Aisha Abdulkadir, Tse Terna James","doi":"10.52951/dasj.23150209","DOIUrl":null,"url":null,"abstract":"Soil compaction has been recognized as a severe problem in mechanized agriculture and influences soil properties and processes. A study evaluated the effect of different energy levels on selected properties of Alfisols treated with different sources of organic amendments. The treatments consisted of soils with compost (10 pots), cow dung (10 pots), and control. These were laid out in a completely randomized design and replicated two times. All pots (soil ± amendment) were saturated and allowed to drain freely for 24 hours and 48 hours, respectively, and compacted to 0, 75, 150, 225, and 300 Joules of energy. Bulk density (BD), penetration resistance (PR), saturated hydraulic conductivity (Ksat), particle size distribution (PSD), gravimetric moisture content (GMC), and moisture retention (MR) was determined from treated plots. Results obtained indicated that the soil is sandy. BD and PR were highest in control, with mean values of 1.803 g cm-3 and 1.762 kg F cm-2, respectively. Treatment with compost improved the BD and PR with lower mean values of 1.320 g cm-3 and 1.283 kg F cm-2 respectively, compared to cow dung and untreated control. With increasing energy inputs, there was a highly significant difference amongst the studied soil properties at all the energies at p<0.0001. Minimum tillage is recommended to reduce the stress caused by heavy energy inputs on these soil properties. The organic matter will directly contribute to plant nutrients such as nitrogen, phosphorus, and micronutrients.","PeriodicalId":11234,"journal":{"name":"Diyala Agricultural Sciences Journal","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Compaction Energy on Selected Physical and Hydraulic Properties of Soils Amended With Different Sources of Organic Matter\",\"authors\":\"J. H. Abdulkareem, Aisha Abdulkadir, Tse Terna James\",\"doi\":\"10.52951/dasj.23150209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil compaction has been recognized as a severe problem in mechanized agriculture and influences soil properties and processes. A study evaluated the effect of different energy levels on selected properties of Alfisols treated with different sources of organic amendments. The treatments consisted of soils with compost (10 pots), cow dung (10 pots), and control. These were laid out in a completely randomized design and replicated two times. All pots (soil ± amendment) were saturated and allowed to drain freely for 24 hours and 48 hours, respectively, and compacted to 0, 75, 150, 225, and 300 Joules of energy. Bulk density (BD), penetration resistance (PR), saturated hydraulic conductivity (Ksat), particle size distribution (PSD), gravimetric moisture content (GMC), and moisture retention (MR) was determined from treated plots. Results obtained indicated that the soil is sandy. BD and PR were highest in control, with mean values of 1.803 g cm-3 and 1.762 kg F cm-2, respectively. Treatment with compost improved the BD and PR with lower mean values of 1.320 g cm-3 and 1.283 kg F cm-2 respectively, compared to cow dung and untreated control. With increasing energy inputs, there was a highly significant difference amongst the studied soil properties at all the energies at p<0.0001. Minimum tillage is recommended to reduce the stress caused by heavy energy inputs on these soil properties. The organic matter will directly contribute to plant nutrients such as nitrogen, phosphorus, and micronutrients.\",\"PeriodicalId\":11234,\"journal\":{\"name\":\"Diyala Agricultural Sciences Journal\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diyala Agricultural Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52951/dasj.23150209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diyala Agricultural Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52951/dasj.23150209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Compaction Energy on Selected Physical and Hydraulic Properties of Soils Amended With Different Sources of Organic Matter
Soil compaction has been recognized as a severe problem in mechanized agriculture and influences soil properties and processes. A study evaluated the effect of different energy levels on selected properties of Alfisols treated with different sources of organic amendments. The treatments consisted of soils with compost (10 pots), cow dung (10 pots), and control. These were laid out in a completely randomized design and replicated two times. All pots (soil ± amendment) were saturated and allowed to drain freely for 24 hours and 48 hours, respectively, and compacted to 0, 75, 150, 225, and 300 Joules of energy. Bulk density (BD), penetration resistance (PR), saturated hydraulic conductivity (Ksat), particle size distribution (PSD), gravimetric moisture content (GMC), and moisture retention (MR) was determined from treated plots. Results obtained indicated that the soil is sandy. BD and PR were highest in control, with mean values of 1.803 g cm-3 and 1.762 kg F cm-2, respectively. Treatment with compost improved the BD and PR with lower mean values of 1.320 g cm-3 and 1.283 kg F cm-2 respectively, compared to cow dung and untreated control. With increasing energy inputs, there was a highly significant difference amongst the studied soil properties at all the energies at p<0.0001. Minimum tillage is recommended to reduce the stress caused by heavy energy inputs on these soil properties. The organic matter will directly contribute to plant nutrients such as nitrogen, phosphorus, and micronutrients.