Roberto Francesco Pitzalis, Daegeun Park, Darwin G. Caldwell, G. Berselli, J. Ortiz
{"title":"可穿戴腕式外骨骼的技术现状(第二部分):商业和研究设备回顾","authors":"Roberto Francesco Pitzalis, Daegeun Park, Darwin G. Caldwell, G. Berselli, J. Ortiz","doi":"10.3390/machines12010021","DOIUrl":null,"url":null,"abstract":"Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities of the hand with serious repercussions both in working and daily activities. To address this, researchers have been developing and proving the benefits of wrist exoskeletons. This paper, which is Part II of a study on wrist exoskeletons, presents and summarizes wearable wrist exoskeleton devices intended for use in rehabilitation, assistance, and occupational fields. Exoskeletons considered within the study are those available either in a prototyping phase or on the market. These devices can support the human wrist by relieving pain or mitigating fatigue while allowing for at least one movement. Most of them have been designed to be active (80%) for higher force/torque transmission, and soft for better kinematic compliance, ergonomics, and safety (13 devices out of 24, more than 50%). Electric motors and cable transmission (respectively 11 and 9 devices, out of 24, i.e., almost 50% and 40%) are the most common due to their simplicity, controllability, safety, power-to-weight ratio, and the possibility of remote actuation. As sensing technologies, position and force sensors are widely used in all devices (almost 90%). The control strategy depends mainly on the application domain: for rehabilitation, CPM (control passive motion) is preferred (35% of devices), while for assistance and occupational purposes, AAN (assistance-as-needed) is more suitable (38% of the devices). What emerges from this analysis is that, while rehabilitation and training are fields in which exoskeletons have grown more easily and gained some user acceptance (almost 18 devices, of which 4 are available on the market), relatively few devices have been designed for occupational purposes (5, with only 2 available on the market) due to difficulties in meeting the acceptance and needs of users. In this perspective, as a result of the state-of-the-art analysis, the authors propose a conceptual idea for a portable soft wrist exoskeleton for occupational assistance.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"92 s388","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices\",\"authors\":\"Roberto Francesco Pitzalis, Daegeun Park, Darwin G. Caldwell, G. Berselli, J. Ortiz\",\"doi\":\"10.3390/machines12010021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities of the hand with serious repercussions both in working and daily activities. To address this, researchers have been developing and proving the benefits of wrist exoskeletons. This paper, which is Part II of a study on wrist exoskeletons, presents and summarizes wearable wrist exoskeleton devices intended for use in rehabilitation, assistance, and occupational fields. Exoskeletons considered within the study are those available either in a prototyping phase or on the market. These devices can support the human wrist by relieving pain or mitigating fatigue while allowing for at least one movement. Most of them have been designed to be active (80%) for higher force/torque transmission, and soft for better kinematic compliance, ergonomics, and safety (13 devices out of 24, more than 50%). Electric motors and cable transmission (respectively 11 and 9 devices, out of 24, i.e., almost 50% and 40%) are the most common due to their simplicity, controllability, safety, power-to-weight ratio, and the possibility of remote actuation. As sensing technologies, position and force sensors are widely used in all devices (almost 90%). The control strategy depends mainly on the application domain: for rehabilitation, CPM (control passive motion) is preferred (35% of devices), while for assistance and occupational purposes, AAN (assistance-as-needed) is more suitable (38% of the devices). What emerges from this analysis is that, while rehabilitation and training are fields in which exoskeletons have grown more easily and gained some user acceptance (almost 18 devices, of which 4 are available on the market), relatively few devices have been designed for occupational purposes (5, with only 2 available on the market) due to difficulties in meeting the acceptance and needs of users. In this perspective, as a result of the state-of-the-art analysis, the authors propose a conceptual idea for a portable soft wrist exoskeleton for occupational assistance.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"92 s388\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12010021\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
State of the Art in Wearable Wrist Exoskeletons Part II: A Review of Commercial and Research Devices
Manual handling tasks, both in daily activities and at work, require high dexterity and the ability to move objects of different shapes and sizes. However, musculoskeletal disorders that can arise due to aging, disabilities, overloading, or strenuous work can impact the natural capabilities of the hand with serious repercussions both in working and daily activities. To address this, researchers have been developing and proving the benefits of wrist exoskeletons. This paper, which is Part II of a study on wrist exoskeletons, presents and summarizes wearable wrist exoskeleton devices intended for use in rehabilitation, assistance, and occupational fields. Exoskeletons considered within the study are those available either in a prototyping phase or on the market. These devices can support the human wrist by relieving pain or mitigating fatigue while allowing for at least one movement. Most of them have been designed to be active (80%) for higher force/torque transmission, and soft for better kinematic compliance, ergonomics, and safety (13 devices out of 24, more than 50%). Electric motors and cable transmission (respectively 11 and 9 devices, out of 24, i.e., almost 50% and 40%) are the most common due to their simplicity, controllability, safety, power-to-weight ratio, and the possibility of remote actuation. As sensing technologies, position and force sensors are widely used in all devices (almost 90%). The control strategy depends mainly on the application domain: for rehabilitation, CPM (control passive motion) is preferred (35% of devices), while for assistance and occupational purposes, AAN (assistance-as-needed) is more suitable (38% of the devices). What emerges from this analysis is that, while rehabilitation and training are fields in which exoskeletons have grown more easily and gained some user acceptance (almost 18 devices, of which 4 are available on the market), relatively few devices have been designed for occupational purposes (5, with only 2 available on the market) due to difficulties in meeting the acceptance and needs of users. In this perspective, as a result of the state-of-the-art analysis, the authors propose a conceptual idea for a portable soft wrist exoskeleton for occupational assistance.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.