{"title":"基于像素级缺陷图像特征显著性优化的地铁隧道缺陷多视觉图像融合方法","authors":"Dongwei Qiu, Zhengkun Zhu, Xingyu Wang, Ke-liang Ding, Zhaowei Wang, Yida Shi, Wenyue Niu, Shanshan Wan","doi":"10.1088/1361-6501/ad197d","DOIUrl":null,"url":null,"abstract":"The multi vision metro tunnel defect sensing system mainly consists of IRT and RGB cameras, which can automatically identify and extract small tunnel lining surface defects, greatly improving detection efficiency. However, the presence of various issues like train vibration, inconsistent lighting, fluctuations in temperature and humidity leads to the images showing inadequate uniformity in illumination, blurriness, and a decrease in the level of detail. The above issues have led to unsatisfactory fusion processing results for multiple visual images and increased missed detection rates. A multi visual images fusion approach for metro tunnel defects based on saliency optimization of pixel level defect image features is proposed. This method first takes the motion state of the train and the blurry image as constraints to eliminate dynamic blurring in the image. Secondly, Image weights are allocated based on the uniformity of visible light image illumination in the tunnel, as well as real-time temperature and humidity. Finally, image feature extraction and fusion are performed by a U-Net network that integrates channel attention mechanisms. The experimental results demonstrate that this approach improves the image pixel value variation rate by 39.7%, enhances the edge quality by 23%, and outperforms similar approach in terms of average gradient, gradient quality, and sum of difference correlation with improvements of 15.9%, 7.3%, and 26.6% respectively.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":"102 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi visual images fusion approach for metro tunnel defects based on saliency optimization of pixel level defect image features\",\"authors\":\"Dongwei Qiu, Zhengkun Zhu, Xingyu Wang, Ke-liang Ding, Zhaowei Wang, Yida Shi, Wenyue Niu, Shanshan Wan\",\"doi\":\"10.1088/1361-6501/ad197d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi vision metro tunnel defect sensing system mainly consists of IRT and RGB cameras, which can automatically identify and extract small tunnel lining surface defects, greatly improving detection efficiency. However, the presence of various issues like train vibration, inconsistent lighting, fluctuations in temperature and humidity leads to the images showing inadequate uniformity in illumination, blurriness, and a decrease in the level of detail. The above issues have led to unsatisfactory fusion processing results for multiple visual images and increased missed detection rates. A multi visual images fusion approach for metro tunnel defects based on saliency optimization of pixel level defect image features is proposed. This method first takes the motion state of the train and the blurry image as constraints to eliminate dynamic blurring in the image. Secondly, Image weights are allocated based on the uniformity of visible light image illumination in the tunnel, as well as real-time temperature and humidity. Finally, image feature extraction and fusion are performed by a U-Net network that integrates channel attention mechanisms. The experimental results demonstrate that this approach improves the image pixel value variation rate by 39.7%, enhances the edge quality by 23%, and outperforms similar approach in terms of average gradient, gradient quality, and sum of difference correlation with improvements of 15.9%, 7.3%, and 26.6% respectively.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad197d\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad197d","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Multi visual images fusion approach for metro tunnel defects based on saliency optimization of pixel level defect image features
The multi vision metro tunnel defect sensing system mainly consists of IRT and RGB cameras, which can automatically identify and extract small tunnel lining surface defects, greatly improving detection efficiency. However, the presence of various issues like train vibration, inconsistent lighting, fluctuations in temperature and humidity leads to the images showing inadequate uniformity in illumination, blurriness, and a decrease in the level of detail. The above issues have led to unsatisfactory fusion processing results for multiple visual images and increased missed detection rates. A multi visual images fusion approach for metro tunnel defects based on saliency optimization of pixel level defect image features is proposed. This method first takes the motion state of the train and the blurry image as constraints to eliminate dynamic blurring in the image. Secondly, Image weights are allocated based on the uniformity of visible light image illumination in the tunnel, as well as real-time temperature and humidity. Finally, image feature extraction and fusion are performed by a U-Net network that integrates channel attention mechanisms. The experimental results demonstrate that this approach improves the image pixel value variation rate by 39.7%, enhances the edge quality by 23%, and outperforms similar approach in terms of average gradient, gradient quality, and sum of difference correlation with improvements of 15.9%, 7.3%, and 26.6% respectively.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.