设计有源电子扫描阵列,作为高速无线电通信信道机载设备的一部分

E. R. Zhdanov, A. O. Slavyanskiy, O. S. Kharina, A. V. Shpack
{"title":"设计有源电子扫描阵列,作为高速无线电通信信道机载设备的一部分","authors":"E. R. Zhdanov, A. O. Slavyanskiy, O. S. Kharina, A. V. Shpack","doi":"10.18287/2541-7533-2023-22-4-59-70","DOIUrl":null,"url":null,"abstract":"The active electronically scanned array being developed is designed to provide an all-weather high-speed radio communication channel “Spacecraft – Earth”. It is supposed to provide fast, inertia-free observation of space by swinging the antenna beam electrically, and, in fact, is a dynamic space-time filter of the spacecraft. The aim of the work is to identify the basic principles of functioning of the array as part of the spacecraft with inherent limitations in the mass-dimensional and energy characteristics of the onboard equipment and, at the same time, high requirements for the functional characteristics. This paper presents the calculation and the main results of designing an active electronically scanned array complying with the requirements for optimizing the parameters of the antenna system. To assess the effect of scanning on the phase characteristics of the chips, a nonlinear amplifier model was developed. A statistical analysis of the phase characteristics was carried out when the load resistance changed in accordance with the obtained distribution laws. When calculating the resulting directional pattern of the antenna array, destabilizing factors were taken into account in accordance with the results of the study of the prototypes of the antenna array being created. Phase errors were calculated, mainly determined by the errors of the terminal parts of the receiving paths. Measures were implemented to ensure the effect of such phase errors on the directional pattern of the array only on the far side lobes.","PeriodicalId":265584,"journal":{"name":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an active electronically scanned array as part of onboard equipment of a high-speed radio communication channel\",\"authors\":\"E. R. Zhdanov, A. O. Slavyanskiy, O. S. Kharina, A. V. Shpack\",\"doi\":\"10.18287/2541-7533-2023-22-4-59-70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The active electronically scanned array being developed is designed to provide an all-weather high-speed radio communication channel “Spacecraft – Earth”. It is supposed to provide fast, inertia-free observation of space by swinging the antenna beam electrically, and, in fact, is a dynamic space-time filter of the spacecraft. The aim of the work is to identify the basic principles of functioning of the array as part of the spacecraft with inherent limitations in the mass-dimensional and energy characteristics of the onboard equipment and, at the same time, high requirements for the functional characteristics. This paper presents the calculation and the main results of designing an active electronically scanned array complying with the requirements for optimizing the parameters of the antenna system. To assess the effect of scanning on the phase characteristics of the chips, a nonlinear amplifier model was developed. A statistical analysis of the phase characteristics was carried out when the load resistance changed in accordance with the obtained distribution laws. When calculating the resulting directional pattern of the antenna array, destabilizing factors were taken into account in accordance with the results of the study of the prototypes of the antenna array being created. Phase errors were calculated, mainly determined by the errors of the terminal parts of the receiving paths. Measures were implemented to ensure the effect of such phase errors on the directional pattern of the array only on the far side lobes.\",\"PeriodicalId\":265584,\"journal\":{\"name\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VESTNIK of Samara University. Aerospace and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2541-7533-2023-22-4-59-70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VESTNIK of Samara University. Aerospace and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7533-2023-22-4-59-70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正在开发的有源电子扫描阵列旨在提供 "航天器-地球 "全天候高速无线电通信信道。它通过电子方式摆动天线波束,提供快速、无惯性的空间观测,实际上是航天器的动态时空滤波器。这项工作的目的是确定作为航天器一部分的阵列的基本工作原理,该阵列在机载设备的质量尺寸和能量特性方面有固有的限制,同时对功能特性有很高的要求。本文介绍了按照优化天线系统参数的要求设计有源电子扫描阵列的计算和主要结果。为了评估扫描对芯片相位特性的影响,开发了一个非线性放大器模型。当负载电阻根据所获得的分布规律发生变化时,对相位特性进行了统计分析。在计算天线阵列的定向模式时,根据对正在制作的天线阵列原型的研究结果,考虑了不稳定因素。计算出的相位误差主要由接收路径终端部分的误差决定。为确保这种相位误差对阵列方向图的影响只限于远侧叶,采取了一些措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing an active electronically scanned array as part of onboard equipment of a high-speed radio communication channel
The active electronically scanned array being developed is designed to provide an all-weather high-speed radio communication channel “Spacecraft – Earth”. It is supposed to provide fast, inertia-free observation of space by swinging the antenna beam electrically, and, in fact, is a dynamic space-time filter of the spacecraft. The aim of the work is to identify the basic principles of functioning of the array as part of the spacecraft with inherent limitations in the mass-dimensional and energy characteristics of the onboard equipment and, at the same time, high requirements for the functional characteristics. This paper presents the calculation and the main results of designing an active electronically scanned array complying with the requirements for optimizing the parameters of the antenna system. To assess the effect of scanning on the phase characteristics of the chips, a nonlinear amplifier model was developed. A statistical analysis of the phase characteristics was carried out when the load resistance changed in accordance with the obtained distribution laws. When calculating the resulting directional pattern of the antenna array, destabilizing factors were taken into account in accordance with the results of the study of the prototypes of the antenna array being created. Phase errors were calculated, mainly determined by the errors of the terminal parts of the receiving paths. Measures were implemented to ensure the effect of such phase errors on the directional pattern of the array only on the far side lobes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental analysis of instability and self-oscillations in an electrohydraulic servo drive Reliability-oriented design of PCM thermodimensionally stable space structures Method of first-approximation calculation of take-off weight of a light aircraft with a hybrid propulsion system The relevance of introducing a requirements management system in the production process of the aircraft engine construction industry Forecasting the parameters of performance monitoring of complex technical systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1