用模糊分析层次过程评估混凝土灌注钢管拱桥的安全方法

IF 3.1 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Buildings Pub Date : 2023-12-25 DOI:10.3390/buildings14010067
Peiwen Shen, Yue Chen, Song Ma, Yong Yan
{"title":"用模糊分析层次过程评估混凝土灌注钢管拱桥的安全方法","authors":"Peiwen Shen, Yue Chen, Song Ma, Yong Yan","doi":"10.3390/buildings14010067","DOIUrl":null,"url":null,"abstract":"The concrete-filled steel tubular (CFST) arch bridge has achieved significant development in recent years due to its unique mechanical performance and technical advantages. However, due to the lagging theoretical research compared to engineering practice, many problems have been exposed in the existing bridges, resulting in adverse social impacts and enormous economic losses. With the increasing prominence of safety issues in CFST arch bridges, it is necessary to assess their safety condition in service. This paper establishes a safety assessment index system for CFST arch bridges using the fuzzy analytic hierarchy process (AHP) based on an exponential scale. The assessment method proposed includes the following main points: (1) Bridge safety assessment is closely related to the load-bearing capacity of components. This study proposes an assessment index that comprehensively considers both the defect conditions and the design load-bearing capacity of components for the safety assessment. (2) The exponential scale method is introduced to safety assessment for the first time, and the AHP based on an exponential scale is applied to calculate the component weights. (3) Considering the specific structural characteristics of CFST arch bridges, this study provides a detailed division of component types and calculates the component weights. By combining the component assessment indexes, a comprehensive safety assessment index system is established, and a safety assessment method for CFST arch bridges is proposed. (4) Taking the Jiantiao Bridge in Zhejiang Province as an engineering case, the load-bearing capacity of components is calculated using finite element software ANSYS 19.1. Based on the established safety assessment index system, the safety of the bridge is assessed by integrating the inspection results. (5) Software for the safety assessment of a CFST arch bridge is developed using Visual Basic, and the assessment results align well with the actual condition of the bridge.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"14 10","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety Assessment Method of Concrete-Filled Steel Tubular Arch Bridge by Fuzzy Analytic Hierarchy Process\",\"authors\":\"Peiwen Shen, Yue Chen, Song Ma, Yong Yan\",\"doi\":\"10.3390/buildings14010067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concrete-filled steel tubular (CFST) arch bridge has achieved significant development in recent years due to its unique mechanical performance and technical advantages. However, due to the lagging theoretical research compared to engineering practice, many problems have been exposed in the existing bridges, resulting in adverse social impacts and enormous economic losses. With the increasing prominence of safety issues in CFST arch bridges, it is necessary to assess their safety condition in service. This paper establishes a safety assessment index system for CFST arch bridges using the fuzzy analytic hierarchy process (AHP) based on an exponential scale. The assessment method proposed includes the following main points: (1) Bridge safety assessment is closely related to the load-bearing capacity of components. This study proposes an assessment index that comprehensively considers both the defect conditions and the design load-bearing capacity of components for the safety assessment. (2) The exponential scale method is introduced to safety assessment for the first time, and the AHP based on an exponential scale is applied to calculate the component weights. (3) Considering the specific structural characteristics of CFST arch bridges, this study provides a detailed division of component types and calculates the component weights. By combining the component assessment indexes, a comprehensive safety assessment index system is established, and a safety assessment method for CFST arch bridges is proposed. (4) Taking the Jiantiao Bridge in Zhejiang Province as an engineering case, the load-bearing capacity of components is calculated using finite element software ANSYS 19.1. Based on the established safety assessment index system, the safety of the bridge is assessed by integrating the inspection results. (5) Software for the safety assessment of a CFST arch bridge is developed using Visual Basic, and the assessment results align well with the actual condition of the bridge.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"14 10\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010067\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010067","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

混凝土灌注钢管(CFST)拱桥因其独特的力学性能和技术优势,近年来取得了长足的发展。然而,由于理论研究滞后于工程实践,现有桥梁暴露出许多问题,造成了不良的社会影响和巨大的经济损失。随着 CFST 拱桥安全问题的日益突出,有必要对其在使用过程中的安全状况进行评估。本文利用基于指数标度的模糊层次分析法(AHP)建立了 CFST 拱桥的安全评估指标体系。提出的评估方法主要包括以下几点:(1)桥梁安全评估与构件的承载能力密切相关。本研究提出了一种综合考虑缺陷情况和构件设计承载力的安全评估指标。(2)首次将指数标度法引入安全评估,并应用基于指数标度的 AHP 计算构件权重。(3) 考虑到 CFST 拱桥的具体结构特点,本研究对构件类型进行了详细划分,并计算了构件权重。结合构件评估指标,建立综合安全评估指标体系,提出 CFST 拱桥安全评估方法。(4) 以浙江省建陶大桥为例,使用有限元软件 ANSYS 19.1 计算了构件承载力。根据已建立的安全评估指标体系,综合检测结果对桥梁的安全性进行评估。(5) 使用 Visual Basic 开发了 CFST 拱桥安全评估软件,评估结果与桥梁实际状况吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety Assessment Method of Concrete-Filled Steel Tubular Arch Bridge by Fuzzy Analytic Hierarchy Process
The concrete-filled steel tubular (CFST) arch bridge has achieved significant development in recent years due to its unique mechanical performance and technical advantages. However, due to the lagging theoretical research compared to engineering practice, many problems have been exposed in the existing bridges, resulting in adverse social impacts and enormous economic losses. With the increasing prominence of safety issues in CFST arch bridges, it is necessary to assess their safety condition in service. This paper establishes a safety assessment index system for CFST arch bridges using the fuzzy analytic hierarchy process (AHP) based on an exponential scale. The assessment method proposed includes the following main points: (1) Bridge safety assessment is closely related to the load-bearing capacity of components. This study proposes an assessment index that comprehensively considers both the defect conditions and the design load-bearing capacity of components for the safety assessment. (2) The exponential scale method is introduced to safety assessment for the first time, and the AHP based on an exponential scale is applied to calculate the component weights. (3) Considering the specific structural characteristics of CFST arch bridges, this study provides a detailed division of component types and calculates the component weights. By combining the component assessment indexes, a comprehensive safety assessment index system is established, and a safety assessment method for CFST arch bridges is proposed. (4) Taking the Jiantiao Bridge in Zhejiang Province as an engineering case, the load-bearing capacity of components is calculated using finite element software ANSYS 19.1. Based on the established safety assessment index system, the safety of the bridge is assessed by integrating the inspection results. (5) Software for the safety assessment of a CFST arch bridge is developed using Visual Basic, and the assessment results align well with the actual condition of the bridge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Buildings
Buildings Multiple-
CiteScore
3.40
自引率
26.30%
发文量
1883
审稿时长
11 weeks
期刊介绍: BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates
期刊最新文献
Urban Building Energy Modeling to Support Climate-Sensitive Planning in the Suburban Areas of Santiago de Chile Predicting the Compressive Strength of Environmentally Friendly Concrete Using Multiple Machine Learning Algorithms Investigation on Seismic Behavior of Prestressed Steel Strand Composite Reinforced High-Strength Concrete Column A Systematic Literature Review on Transit-Based Evacuation Planning in Emergency Logistics Management: Optimisation and Modelling Approaches Analytical Study of Structural Conformation and Prestressing State of Drum-Shaped Honeycomb Quad-Strut Cable Dome Structure with Different Calculation Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1