Lucas Daudt Franck, G. Ginja, J. P. Carmo, José A. Afonso, M. Luppe
{"title":"利用开源工具为 SHA-256 定制 ASIC 设计","authors":"Lucas Daudt Franck, G. Ginja, J. P. Carmo, José A. Afonso, M. Luppe","doi":"10.3390/computers13010009","DOIUrl":null,"url":null,"abstract":"The growth of digital communications has driven the development of numerous cryptographic methods for secure data transfer and storage. The SHA-256 algorithm is a cryptographic hash function widely used for validating data authenticity, identity, and integrity. The inherent SHA-256 computational overhead has motivated the search for more efficient hardware solutions, such as application-specific integrated circuits (ASICs). This work presents a custom ASIC hardware accelerator for the SHA-256 algorithm entirely created using open-source electronic design automation tools. The integrated circuit was synthesized using SkyWater SKY130 130 nm process technology through the OpenLANE automated workflow. The proposed final design is compatible with 32-bit microcontrollers, has a total area of 104,585 µm2, and operates at a maximum clock frequency of 97.9 MHz. Several optimization configurations were tested and analyzed during the synthesis phase to enhance the performance of the final design.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"43 7","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Custom ASIC Design for SHA-256 Using Open-Source Tools\",\"authors\":\"Lucas Daudt Franck, G. Ginja, J. P. Carmo, José A. Afonso, M. Luppe\",\"doi\":\"10.3390/computers13010009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growth of digital communications has driven the development of numerous cryptographic methods for secure data transfer and storage. The SHA-256 algorithm is a cryptographic hash function widely used for validating data authenticity, identity, and integrity. The inherent SHA-256 computational overhead has motivated the search for more efficient hardware solutions, such as application-specific integrated circuits (ASICs). This work presents a custom ASIC hardware accelerator for the SHA-256 algorithm entirely created using open-source electronic design automation tools. The integrated circuit was synthesized using SkyWater SKY130 130 nm process technology through the OpenLANE automated workflow. The proposed final design is compatible with 32-bit microcontrollers, has a total area of 104,585 µm2, and operates at a maximum clock frequency of 97.9 MHz. Several optimization configurations were tested and analyzed during the synthesis phase to enhance the performance of the final design.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers13010009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers13010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Custom ASIC Design for SHA-256 Using Open-Source Tools
The growth of digital communications has driven the development of numerous cryptographic methods for secure data transfer and storage. The SHA-256 algorithm is a cryptographic hash function widely used for validating data authenticity, identity, and integrity. The inherent SHA-256 computational overhead has motivated the search for more efficient hardware solutions, such as application-specific integrated circuits (ASICs). This work presents a custom ASIC hardware accelerator for the SHA-256 algorithm entirely created using open-source electronic design automation tools. The integrated circuit was synthesized using SkyWater SKY130 130 nm process technology through the OpenLANE automated workflow. The proposed final design is compatible with 32-bit microcontrollers, has a total area of 104,585 µm2, and operates at a maximum clock frequency of 97.9 MHz. Several optimization configurations were tested and analyzed during the synthesis phase to enhance the performance of the final design.