开发基于深度学习的决策支持方法,用于半导体晶片图中的缺陷分类

Gökhan Ergen, Ekrem Düven
{"title":"开发基于深度学习的决策支持方法,用于半导体晶片图中的缺陷分类","authors":"Gökhan Ergen, Ekrem Düven","doi":"10.17482/uumfd.1282062","DOIUrl":null,"url":null,"abstract":"Yarı iletken devre elemanı üretim teknolojilerinde gerçekleşen gelişimler, bu elemanların üzerinde yer aldığı yonga plakası üretim süreçlerini daha karmaşık ve hassas hale getirmektedir. Üretim ile ilişkili çevresel koşullar, malzeme kalitesi gibi çeşitli faktörler, yonga plakası üzerinde kusursuz olarak nitelendirilebilecek alan miktarını yani verimi doğrudan etkilemektedir. Bir yarı iletken yonga plakası üzerindeki kusurlu alanların oluşturabileceği desenler standart olarak tanımlanmış durumdadır. İncelenen bir yonga plakası yüzeyindeki kusurların bu tanımlara göre sınıflandırılması, üretim süreçlerinde oluşan problemlerin kaynaklarının belirlenmesi için önemli bilgiler sağlayabilmektedir. Bu çalışmada, mevcut uygulamalarda her yarı iletken yonga levhası için insan operatörler tarafından yapılan kusur deseni sınıflandırma işlemini belirli bir güvenlik değerine kadar otomatik olarak gerçekleştiren ve böylece toplam işlem süresini azaltan bir karar destek yöntemi geliştirilmiştir. Bu yöntemde temel sınıflandırma işlemi için derin öğrenme metotlarıyla eğitilmiş bir ağ yapısı kullanılmaktadır. İstenilen güvenlik değerinin üzerinde bir doğrulukla sınıflandırılan yonga plakaları doğru sınıflandırılmış olarak kabul edilmekte, bu değerin altında kalan yonga plakaları ise insan operatörün incelemesine tabi tutulmaktadır. Yöntemin kullanılması ile; ortalama büyüklükte bir yonga plakası üretim tesisi için geçerli günlük toplam inceleme süresi, tüm incelemenin insan operatör tarafından yapıldığı durumda geçerli sürenin %10’una indirilebilmekte, ayrıca insan operatörün yapabileceği öznel değerlendirmelerin de önüne geçilebilmektedir.","PeriodicalId":23451,"journal":{"name":"Uludağ University Journal of The Faculty of Engineering","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Deep Learning Based Decision Support Method for Defect Classifications in Semiconductor Wafer Maps\",\"authors\":\"Gökhan Ergen, Ekrem Düven\",\"doi\":\"10.17482/uumfd.1282062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Yarı iletken devre elemanı üretim teknolojilerinde gerçekleşen gelişimler, bu elemanların üzerinde yer aldığı yonga plakası üretim süreçlerini daha karmaşık ve hassas hale getirmektedir. Üretim ile ilişkili çevresel koşullar, malzeme kalitesi gibi çeşitli faktörler, yonga plakası üzerinde kusursuz olarak nitelendirilebilecek alan miktarını yani verimi doğrudan etkilemektedir. Bir yarı iletken yonga plakası üzerindeki kusurlu alanların oluşturabileceği desenler standart olarak tanımlanmış durumdadır. İncelenen bir yonga plakası yüzeyindeki kusurların bu tanımlara göre sınıflandırılması, üretim süreçlerinde oluşan problemlerin kaynaklarının belirlenmesi için önemli bilgiler sağlayabilmektedir. Bu çalışmada, mevcut uygulamalarda her yarı iletken yonga levhası için insan operatörler tarafından yapılan kusur deseni sınıflandırma işlemini belirli bir güvenlik değerine kadar otomatik olarak gerçekleştiren ve böylece toplam işlem süresini azaltan bir karar destek yöntemi geliştirilmiştir. Bu yöntemde temel sınıflandırma işlemi için derin öğrenme metotlarıyla eğitilmiş bir ağ yapısı kullanılmaktadır. İstenilen güvenlik değerinin üzerinde bir doğrulukla sınıflandırılan yonga plakaları doğru sınıflandırılmış olarak kabul edilmekte, bu değerin altında kalan yonga plakaları ise insan operatörün incelemesine tabi tutulmaktadır. Yöntemin kullanılması ile; ortalama büyüklükte bir yonga plakası üretim tesisi için geçerli günlük toplam inceleme süresi, tüm incelemenin insan operatör tarafından yapıldığı durumda geçerli sürenin %10’una indirilebilmekte, ayrıca insan operatörün yapabileceği öznel değerlendirmelerin de önüne geçilebilmektedir.\",\"PeriodicalId\":23451,\"journal\":{\"name\":\"Uludağ University Journal of The Faculty of Engineering\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uludağ University Journal of The Faculty of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17482/uumfd.1282062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uludağ University Journal of The Faculty of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17482/uumfd.1282062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半导体电路元件制造技术的发展使这些元件所在的晶片制造工艺变得更加复杂和精确。环境条件和材料质量等各种因素会直接影响晶圆上可被表征为完美的区域数量,即良品率。半导体晶片上的缺陷区域可能形成的图案是标准化的。根据这些定义对晶圆表面的缺陷进行分类,可为确定生产过程中出现问题的根源提供重要信息。本研究开发了一种决策支持方法,可自动执行目前由人工操作员对每个半导体晶片进行的缺陷模式分类过程,并可达到一定的安全值,从而减少总的处理时间。在这种方法中,使用深度学习方法训练的网络结构用于基本分类过程。分类准确率高于预期安全值的晶片被视为正确分类,而低于该值的晶片则由人工操作员进行检查。使用该方法后,平均尺寸晶圆厂的每日检查总时间可减少到目前由人工操作员完成整个检查过程的 10%,并可避免人工操作员可能做出的主观评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a Deep Learning Based Decision Support Method for Defect Classifications in Semiconductor Wafer Maps
Yarı iletken devre elemanı üretim teknolojilerinde gerçekleşen gelişimler, bu elemanların üzerinde yer aldığı yonga plakası üretim süreçlerini daha karmaşık ve hassas hale getirmektedir. Üretim ile ilişkili çevresel koşullar, malzeme kalitesi gibi çeşitli faktörler, yonga plakası üzerinde kusursuz olarak nitelendirilebilecek alan miktarını yani verimi doğrudan etkilemektedir. Bir yarı iletken yonga plakası üzerindeki kusurlu alanların oluşturabileceği desenler standart olarak tanımlanmış durumdadır. İncelenen bir yonga plakası yüzeyindeki kusurların bu tanımlara göre sınıflandırılması, üretim süreçlerinde oluşan problemlerin kaynaklarının belirlenmesi için önemli bilgiler sağlayabilmektedir. Bu çalışmada, mevcut uygulamalarda her yarı iletken yonga levhası için insan operatörler tarafından yapılan kusur deseni sınıflandırma işlemini belirli bir güvenlik değerine kadar otomatik olarak gerçekleştiren ve böylece toplam işlem süresini azaltan bir karar destek yöntemi geliştirilmiştir. Bu yöntemde temel sınıflandırma işlemi için derin öğrenme metotlarıyla eğitilmiş bir ağ yapısı kullanılmaktadır. İstenilen güvenlik değerinin üzerinde bir doğrulukla sınıflandırılan yonga plakaları doğru sınıflandırılmış olarak kabul edilmekte, bu değerin altında kalan yonga plakaları ise insan operatörün incelemesine tabi tutulmaktadır. Yöntemin kullanılması ile; ortalama büyüklükte bir yonga plakası üretim tesisi için geçerli günlük toplam inceleme süresi, tüm incelemenin insan operatör tarafından yapıldığı durumda geçerli sürenin %10’una indirilebilmekte, ayrıca insan operatörün yapabileceği öznel değerlendirmelerin de önüne geçilebilmektedir.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FOTOVOLTAİK VE BİYOGAZ ENERJİ SİSTEMLERİNİN ENERJİ VE ÇEVRESEL POTANSİYELLERİNİN İNCELENMESİ: SÜT SIĞIRI ÇİFTLİĞİ ÖRNEĞİ THE EFFECT OF DIFFERENT DIELECTRIC MATERIALS ON RADIATION FEATURES OF SLOTTED PATCH ANTENNAS FOR 6G COMMUNICATION SYSTEMS MARMARA BÖLGESİ’NDE 2013-2022 YILLARI ARASINDAKİ ÇİFTLİK HAYVANLARI TARAFINDAN ÜRETİLEN GÜBRE KAYNAKLI KİRLİLİK YÜKÜNÜN BELİRLENMESİ THE EFFECT OF GRAPHITE ADDITION ON THE FRICTION COEFFICIENT AND WEAR BEHAVIOR OF GLASS FIBER REINFORCED COMPOSITES INVESTİGATİON AND ANALYSİS OF NEW FİBER FROM ALLİUM FİSTULOSUM L. (SCALLİON) PLANT’S TASSEL AND İTS SUİTABİLİTY FOR FİBER-REİNFORCED COMPOSİTES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1