Shivaji Ashok Tarate Tarate, A. P. Bhadane, S.B. Gaikwad, K.A. Kshirsagar
{"title":"通过新迭代法求解时间分数费雪方程的半解析解","authors":"Shivaji Ashok Tarate Tarate, A. P. Bhadane, S.B. Gaikwad, K.A. Kshirsagar","doi":"10.21123/bsj.2023.9137","DOIUrl":null,"url":null,"abstract":"An effective method for resolving non-linear partial differential equations with fractional derivatives is the New Sumudu Transform Iterative Method (NSTIM). It excels at solving difficult mathematical puzzles and offers insightful information about the behaviour of time-fractional Fisher equations. The method, which makes use of Caputo's sense derivatives and Wolfram in Mathematica, is reliable, simple to use, and gives a visual depiction of the solution. The analytical findings demonstrate that the proposed approach is effective and simple in generating precise solutions for the time-fractional Fisher equations. The results are made more reliable and applicable by including Caputo's sense derivatives. Mathematical modelling relies on the effectiveness and simplicity of the NSTIM approach to solve time-fractional Fisher equations since it enables precise solutions without the use of a lot of processing power. The NSTIM approach is a useful tool for researchers in a variety of domains since it also offers a flexible framework that is easily adaptable to other fractional differential equations. It now becomes possible to examine the dynamics and behaviour of complex systems governed by time-fractional Fisher equations with efficiency and reliability, opening up new research avenues. The ability to solve time-fractional Fisher equations efficiently and reliably using the NSTIM approach has significant implications for various fields such as population dynamics, mathematical biology, and epidemiology. Researchers can now analyze the spread of diseases or study the population dynamics of species with higher accuracy and less computational effort. This advancement in solving fractional differential equations paves the way for deeper insights into the behavior and patterns of complex systems, ultimately advancing scientific understanding and offering new possibilities for practical applications.","PeriodicalId":8687,"journal":{"name":"Baghdad Science Journal","volume":"2011 29","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semi-Analytical Solutions for Time-Fractional Fisher Equations via New Iterative Method\",\"authors\":\"Shivaji Ashok Tarate Tarate, A. P. Bhadane, S.B. Gaikwad, K.A. Kshirsagar\",\"doi\":\"10.21123/bsj.2023.9137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective method for resolving non-linear partial differential equations with fractional derivatives is the New Sumudu Transform Iterative Method (NSTIM). It excels at solving difficult mathematical puzzles and offers insightful information about the behaviour of time-fractional Fisher equations. The method, which makes use of Caputo's sense derivatives and Wolfram in Mathematica, is reliable, simple to use, and gives a visual depiction of the solution. The analytical findings demonstrate that the proposed approach is effective and simple in generating precise solutions for the time-fractional Fisher equations. The results are made more reliable and applicable by including Caputo's sense derivatives. Mathematical modelling relies on the effectiveness and simplicity of the NSTIM approach to solve time-fractional Fisher equations since it enables precise solutions without the use of a lot of processing power. The NSTIM approach is a useful tool for researchers in a variety of domains since it also offers a flexible framework that is easily adaptable to other fractional differential equations. It now becomes possible to examine the dynamics and behaviour of complex systems governed by time-fractional Fisher equations with efficiency and reliability, opening up new research avenues. The ability to solve time-fractional Fisher equations efficiently and reliably using the NSTIM approach has significant implications for various fields such as population dynamics, mathematical biology, and epidemiology. Researchers can now analyze the spread of diseases or study the population dynamics of species with higher accuracy and less computational effort. This advancement in solving fractional differential equations paves the way for deeper insights into the behavior and patterns of complex systems, ultimately advancing scientific understanding and offering new possibilities for practical applications.\",\"PeriodicalId\":8687,\"journal\":{\"name\":\"Baghdad Science Journal\",\"volume\":\"2011 29\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baghdad Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21123/bsj.2023.9137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baghdad Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21123/bsj.2023.9137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Semi-Analytical Solutions for Time-Fractional Fisher Equations via New Iterative Method
An effective method for resolving non-linear partial differential equations with fractional derivatives is the New Sumudu Transform Iterative Method (NSTIM). It excels at solving difficult mathematical puzzles and offers insightful information about the behaviour of time-fractional Fisher equations. The method, which makes use of Caputo's sense derivatives and Wolfram in Mathematica, is reliable, simple to use, and gives a visual depiction of the solution. The analytical findings demonstrate that the proposed approach is effective and simple in generating precise solutions for the time-fractional Fisher equations. The results are made more reliable and applicable by including Caputo's sense derivatives. Mathematical modelling relies on the effectiveness and simplicity of the NSTIM approach to solve time-fractional Fisher equations since it enables precise solutions without the use of a lot of processing power. The NSTIM approach is a useful tool for researchers in a variety of domains since it also offers a flexible framework that is easily adaptable to other fractional differential equations. It now becomes possible to examine the dynamics and behaviour of complex systems governed by time-fractional Fisher equations with efficiency and reliability, opening up new research avenues. The ability to solve time-fractional Fisher equations efficiently and reliably using the NSTIM approach has significant implications for various fields such as population dynamics, mathematical biology, and epidemiology. Researchers can now analyze the spread of diseases or study the population dynamics of species with higher accuracy and less computational effort. This advancement in solving fractional differential equations paves the way for deeper insights into the behavior and patterns of complex systems, ultimately advancing scientific understanding and offering new possibilities for practical applications.
期刊介绍:
The journal publishes academic and applied papers dealing with recent topics and scientific concepts. Papers considered for publication in biology, chemistry, computer sciences, physics, and mathematics. Accepted papers will be freely downloaded by professors, researchers, instructors, students, and interested workers. ( Open Access) Published Papers are registered and indexed in the universal libraries.