S. Khusru, David P. Thambiratnam, Mohamed Elchalakani, S. Fawzia
{"title":"偏心荷载下细长混合橡胶混凝土双皮管柱的行为","authors":"S. Khusru, David P. Thambiratnam, Mohamed Elchalakani, S. Fawzia","doi":"10.3390/buildings14010057","DOIUrl":null,"url":null,"abstract":"Rubberised concrete, utilised as infill material within single- or double-skin confinements, has emerged as a sustainable solution, offering improved ductility in structures. Past studies have indicated promising results regarding the axial response of hybrid columns comprising filament wound exterior tubes, rubberised concrete infill, and steel interior tubes. This paper investigates the response of such hybrid columns under eccentric compression using validated numerical techniques. An extensive parametric study is conducted to explore the effects of load eccentricity, rubber percentage, concrete strength, and steel tube strength. Results show that despite credible increases in rubber percentage and load eccentricity, the columns have reasonably good performance. The findings facilitate the prediction of the eccentric behaviour of these hybrid columns across varying rubber percentages, confirming its viability for practical applications under realistic eccentric load conditions. The results further affirm the suitability of this hybrid column in scenarios that necessitate higher ductility.","PeriodicalId":48546,"journal":{"name":"Buildings","volume":"1983 9","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading\",\"authors\":\"S. Khusru, David P. Thambiratnam, Mohamed Elchalakani, S. Fawzia\",\"doi\":\"10.3390/buildings14010057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rubberised concrete, utilised as infill material within single- or double-skin confinements, has emerged as a sustainable solution, offering improved ductility in structures. Past studies have indicated promising results regarding the axial response of hybrid columns comprising filament wound exterior tubes, rubberised concrete infill, and steel interior tubes. This paper investigates the response of such hybrid columns under eccentric compression using validated numerical techniques. An extensive parametric study is conducted to explore the effects of load eccentricity, rubber percentage, concrete strength, and steel tube strength. Results show that despite credible increases in rubber percentage and load eccentricity, the columns have reasonably good performance. The findings facilitate the prediction of the eccentric behaviour of these hybrid columns across varying rubber percentages, confirming its viability for practical applications under realistic eccentric load conditions. The results further affirm the suitability of this hybrid column in scenarios that necessitate higher ductility.\",\"PeriodicalId\":48546,\"journal\":{\"name\":\"Buildings\",\"volume\":\"1983 9\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/buildings14010057\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/buildings14010057","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Behaviour of Slender Hybrid Rubberised Concrete Double Skin Tubular Columns under Eccentric Loading
Rubberised concrete, utilised as infill material within single- or double-skin confinements, has emerged as a sustainable solution, offering improved ductility in structures. Past studies have indicated promising results regarding the axial response of hybrid columns comprising filament wound exterior tubes, rubberised concrete infill, and steel interior tubes. This paper investigates the response of such hybrid columns under eccentric compression using validated numerical techniques. An extensive parametric study is conducted to explore the effects of load eccentricity, rubber percentage, concrete strength, and steel tube strength. Results show that despite credible increases in rubber percentage and load eccentricity, the columns have reasonably good performance. The findings facilitate the prediction of the eccentric behaviour of these hybrid columns across varying rubber percentages, confirming its viability for practical applications under realistic eccentric load conditions. The results further affirm the suitability of this hybrid column in scenarios that necessitate higher ductility.
期刊介绍:
BUILDINGS content is primarily staff-written and submitted information is evaluated by the editors for its value to the audience. Such information may be used in articles with appropriate attribution to the source. The editorial staff considers information on the following topics: -Issues directed at building owners and facility managers in North America -Issues relevant to existing buildings, including retrofits, maintenance and modernization -Solution-based content, such as tips and tricks -New construction but only with an eye to issues involving maintenance and operation We generally do not review the following topics because these are not relevant to our readers: -Information on the residential market with the exception of multifamily buildings -International news unrelated to the North American market -Real estate market updates or construction updates