{"title":"冗余串行机械手的操作配置空间运动学控制中的避障问题","authors":"Adrián Peidró, Edward J. Haug","doi":"10.3390/machines12010010","DOIUrl":null,"url":null,"abstract":"Kinematic control of redundant serial manipulators has been carried out for the past half century based primarily on a generalized inverse velocity formulation that is known to have mathematical deficiencies. A recently developed inverse kinematic configuration mapping is employed in an operational configuration space differentiable manifold formulation for redundant-manipulator kinematic control with obstacle avoidance. This formulation is shown to resolve deficiencies in the generalized inverse velocity formulation, especially for high-degree-of-redundancy manipulators. Tracking a specified output trajectory while avoiding obstacles for four- and twenty-degree-of-redundancy manipulators is carried out to demonstrate the effectiveness of the differentiable manifold approach for applications with a high degree of redundancy and to show that it indeed resolves deficiencies of the conventional generalized inverse velocity formulation in challenging applications.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"32 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators\",\"authors\":\"Adrián Peidró, Edward J. Haug\",\"doi\":\"10.3390/machines12010010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinematic control of redundant serial manipulators has been carried out for the past half century based primarily on a generalized inverse velocity formulation that is known to have mathematical deficiencies. A recently developed inverse kinematic configuration mapping is employed in an operational configuration space differentiable manifold formulation for redundant-manipulator kinematic control with obstacle avoidance. This formulation is shown to resolve deficiencies in the generalized inverse velocity formulation, especially for high-degree-of-redundancy manipulators. Tracking a specified output trajectory while avoiding obstacles for four- and twenty-degree-of-redundancy manipulators is carried out to demonstrate the effectiveness of the differentiable manifold approach for applications with a high degree of redundancy and to show that it indeed resolves deficiencies of the conventional generalized inverse velocity formulation in challenging applications.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12010010\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010010","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Obstacle Avoidance in Operational Configuration Space Kinematic Control of Redundant Serial Manipulators
Kinematic control of redundant serial manipulators has been carried out for the past half century based primarily on a generalized inverse velocity formulation that is known to have mathematical deficiencies. A recently developed inverse kinematic configuration mapping is employed in an operational configuration space differentiable manifold formulation for redundant-manipulator kinematic control with obstacle avoidance. This formulation is shown to resolve deficiencies in the generalized inverse velocity formulation, especially for high-degree-of-redundancy manipulators. Tracking a specified output trajectory while avoiding obstacles for four- and twenty-degree-of-redundancy manipulators is carried out to demonstrate the effectiveness of the differentiable manifold approach for applications with a high degree of redundancy and to show that it indeed resolves deficiencies of the conventional generalized inverse velocity formulation in challenging applications.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.