用机器学习方法充分预测带床面冲积河道的流动阻力

A. Mir, M. Patel
{"title":"用机器学习方法充分预测带床面冲积河道的流动阻力","authors":"A. Mir, M. Patel","doi":"10.2166/wst.2023.396","DOIUrl":null,"url":null,"abstract":"In natural rivers, flow conditions are mainly dependent on flow resistance and type of roughness. The interactions among flow and bedforms are complex in nature as bedform dynamics primarily regulate the flow resistance. Manning's equation is the most frequently used equation for this purpose. Therefore, there is a need to develop alternate reliable techniques for adequate prediction of Manning's roughness coefficient (n) in alluvial channels with bedforms. Thus, the main objective of this study is to utilize machine learning (ML) models for predicting ‘n’ based on the six input features. The performance of ML models was assessed using Pearson's coefficient (R2), sensitivity analysis, Taylor's diagram, box plots, and K-fold method has been used for the cross-validation. Based on the output of the current work, models such as random forest, extra trees regression, and extreme gradient boosting performed extremely well (R2 ≥ 0.99), whereas, Lasso Regression models showed moderate efficiency in predicting roughness. The sensitivity analysis indicated that the energy grade line has a significant impact in predicting the roughness as compared to the other parameters. The alternate approach utilized in the present study provides insights into riverbed characteristics, enhancing the understanding of the complex relationship between roughness and other independent parameters.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for adequate prediction of flow resistance in alluvial channels with bedforms\",\"authors\":\"A. Mir, M. Patel\",\"doi\":\"10.2166/wst.2023.396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In natural rivers, flow conditions are mainly dependent on flow resistance and type of roughness. The interactions among flow and bedforms are complex in nature as bedform dynamics primarily regulate the flow resistance. Manning's equation is the most frequently used equation for this purpose. Therefore, there is a need to develop alternate reliable techniques for adequate prediction of Manning's roughness coefficient (n) in alluvial channels with bedforms. Thus, the main objective of this study is to utilize machine learning (ML) models for predicting ‘n’ based on the six input features. The performance of ML models was assessed using Pearson's coefficient (R2), sensitivity analysis, Taylor's diagram, box plots, and K-fold method has been used for the cross-validation. Based on the output of the current work, models such as random forest, extra trees regression, and extreme gradient boosting performed extremely well (R2 ≥ 0.99), whereas, Lasso Regression models showed moderate efficiency in predicting roughness. The sensitivity analysis indicated that the energy grade line has a significant impact in predicting the roughness as compared to the other parameters. The alternate approach utilized in the present study provides insights into riverbed characteristics, enhancing the understanding of the complex relationship between roughness and other independent parameters.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2023.396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2023.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自然河流中,流动条件主要取决于流动阻力和粗糙度类型。由于床面动力学主要调节流动阻力,因此水流与床面之间的相互作用在本质上是复杂的。曼宁方程是最常用的计算公式。因此,有必要开发其他可靠的技术,以充分预测有床基的冲积河道中的曼宁粗糙度系数(n)。因此,本研究的主要目标是利用机器学习(ML)模型来预测基于六个输入特征的 "n"。使用皮尔逊系数(R2)、灵敏度分析、泰勒图、箱形图和 K-fold 交叉验证法评估了 ML 模型的性能。根据当前工作的结果,随机森林、额外树回归和极梯度提升等模型表现极佳(R2 ≥ 0.99),而拉索回归模型在预测粗糙度方面表现出中等效率。敏感性分析表明,与其他参数相比,能量品位线对粗糙度的预测有显著影响。本研究采用的替代方法有助于深入了解河床特征,加深对粗糙度与其他独立参数之间复杂关系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning approaches for adequate prediction of flow resistance in alluvial channels with bedforms
In natural rivers, flow conditions are mainly dependent on flow resistance and type of roughness. The interactions among flow and bedforms are complex in nature as bedform dynamics primarily regulate the flow resistance. Manning's equation is the most frequently used equation for this purpose. Therefore, there is a need to develop alternate reliable techniques for adequate prediction of Manning's roughness coefficient (n) in alluvial channels with bedforms. Thus, the main objective of this study is to utilize machine learning (ML) models for predicting ‘n’ based on the six input features. The performance of ML models was assessed using Pearson's coefficient (R2), sensitivity analysis, Taylor's diagram, box plots, and K-fold method has been used for the cross-validation. Based on the output of the current work, models such as random forest, extra trees regression, and extreme gradient boosting performed extremely well (R2 ≥ 0.99), whereas, Lasso Regression models showed moderate efficiency in predicting roughness. The sensitivity analysis indicated that the energy grade line has a significant impact in predicting the roughness as compared to the other parameters. The alternate approach utilized in the present study provides insights into riverbed characteristics, enhancing the understanding of the complex relationship between roughness and other independent parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1