{"title":"测序揭示发育中小鼠肠神经系统中丰富的 miRNAs","authors":"Christopher Pai, Rajarshi Sengupta, R. Heuckeroth","doi":"10.3390/ncrna10010001","DOIUrl":null,"url":null,"abstract":"The enteric nervous system (ENS) is an essential network of neurons and glia in the bowel wall. Defects in ENS development can result in Hirschsprung disease (HSCR), a life-threatening condition characterized by severe constipation, abdominal distention, bilious vomiting, and failure to thrive. A growing body of literature connects HSCR to alterations in miRNA expression, but there are limited data on the normal miRNA landscape in the developing ENS. We sequenced small RNAs (smRNA-seq) and messenger RNAs (mRNA-seq) from ENS precursor cells of mid-gestation Ednrb-EGFP mice and compared them to aggregated RNA from all other cells in the developing bowel. Our smRNA-seq results identified 73 miRNAs that were significantly enriched and highly expressed in the developing ENS, with miR-9, miR-27b, miR-124, miR-137, and miR-488 as our top 5 miRNAs that are conserved in humans. However, contrary to prior reports, our follow-up analyses of miR-137 showed that loss of Mir137 in Nestin-cre, Wnt1-cre, Sox10-cre, or Baf53b-cre lineage cells had no effect on mouse survival or ENS development. Our data provide important context for future studies of miRNAs in HSCR and other ENS diseases and highlight open questions about facility-specific factors in development.","PeriodicalId":19271,"journal":{"name":"Non-Coding RNA","volume":"53 8","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequencing Reveals miRNAs Enriched in the Developing Mouse Enteric Nervous System\",\"authors\":\"Christopher Pai, Rajarshi Sengupta, R. Heuckeroth\",\"doi\":\"10.3390/ncrna10010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The enteric nervous system (ENS) is an essential network of neurons and glia in the bowel wall. Defects in ENS development can result in Hirschsprung disease (HSCR), a life-threatening condition characterized by severe constipation, abdominal distention, bilious vomiting, and failure to thrive. A growing body of literature connects HSCR to alterations in miRNA expression, but there are limited data on the normal miRNA landscape in the developing ENS. We sequenced small RNAs (smRNA-seq) and messenger RNAs (mRNA-seq) from ENS precursor cells of mid-gestation Ednrb-EGFP mice and compared them to aggregated RNA from all other cells in the developing bowel. Our smRNA-seq results identified 73 miRNAs that were significantly enriched and highly expressed in the developing ENS, with miR-9, miR-27b, miR-124, miR-137, and miR-488 as our top 5 miRNAs that are conserved in humans. However, contrary to prior reports, our follow-up analyses of miR-137 showed that loss of Mir137 in Nestin-cre, Wnt1-cre, Sox10-cre, or Baf53b-cre lineage cells had no effect on mouse survival or ENS development. Our data provide important context for future studies of miRNAs in HSCR and other ENS diseases and highlight open questions about facility-specific factors in development.\",\"PeriodicalId\":19271,\"journal\":{\"name\":\"Non-Coding RNA\",\"volume\":\"53 8\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Coding RNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ncrna10010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Coding RNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ncrna10010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Sequencing Reveals miRNAs Enriched in the Developing Mouse Enteric Nervous System
The enteric nervous system (ENS) is an essential network of neurons and glia in the bowel wall. Defects in ENS development can result in Hirschsprung disease (HSCR), a life-threatening condition characterized by severe constipation, abdominal distention, bilious vomiting, and failure to thrive. A growing body of literature connects HSCR to alterations in miRNA expression, but there are limited data on the normal miRNA landscape in the developing ENS. We sequenced small RNAs (smRNA-seq) and messenger RNAs (mRNA-seq) from ENS precursor cells of mid-gestation Ednrb-EGFP mice and compared them to aggregated RNA from all other cells in the developing bowel. Our smRNA-seq results identified 73 miRNAs that were significantly enriched and highly expressed in the developing ENS, with miR-9, miR-27b, miR-124, miR-137, and miR-488 as our top 5 miRNAs that are conserved in humans. However, contrary to prior reports, our follow-up analyses of miR-137 showed that loss of Mir137 in Nestin-cre, Wnt1-cre, Sox10-cre, or Baf53b-cre lineage cells had no effect on mouse survival or ENS development. Our data provide important context for future studies of miRNAs in HSCR and other ENS diseases and highlight open questions about facility-specific factors in development.
Non-Coding RNABiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
6.70
自引率
4.70%
发文量
74
审稿时长
10 weeks
期刊介绍:
Functional studies dealing with identification, structure-function relationships or biological activity of: small regulatory RNAs (miRNAs, siRNAs and piRNAs) associated with the RNA interference pathway small nuclear RNAs, small nucleolar and tRNAs derived small RNAs other types of small RNAs, such as those associated with splice junctions and transcription start sites long non-coding RNAs, including antisense RNAs, long ''intergenic'' RNAs, intronic RNAs and ''enhancer'' RNAs other classes of RNAs such as vault RNAs, scaRNAs, circular RNAs, 7SL RNAs, telomeric and centromeric RNAs regulatory functions of mRNAs and UTR-derived RNAs catalytic and allosteric (riboswitch) RNAs viral, transposon and repeat-derived RNAs bacterial regulatory RNAs, including CRISPR RNAS Analysis of RNA processing, RNA binding proteins, RNA signaling and RNA interaction pathways: DICER AGO, PIWI and PIWI-like proteins other classes of RNA binding and RNA transport proteins RNA interactions with chromatin-modifying complexes RNA interactions with DNA and other RNAs the role of RNA in the formation and function of specialized subnuclear organelles and other aspects of cell biology intercellular and intergenerational RNA signaling RNA processing structure-function relationships in RNA complexes RNA analyses, informatics, tools and technologies: transcriptomic analyses and technologies development of tools and technologies for RNA biology and therapeutics Translational studies involving long and short non-coding RNAs: identification of biomarkers development of new therapies involving microRNAs and other ncRNAs clinical studies involving microRNAs and other ncRNAs.