CSST-Net:用于人类动作识别的信道分割时空网络

IF 2 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Information Technology and Control Pub Date : 2023-12-22 DOI:10.5755/j01.itc.52.4.33239
Xuan Zhou, Jixiang Ma, Jianping Yi
{"title":"CSST-Net:用于人类动作识别的信道分割时空网络","authors":"Xuan Zhou, Jixiang Ma, Jianping Yi","doi":"10.5755/j01.itc.52.4.33239","DOIUrl":null,"url":null,"abstract":"Temporal reasoning is crucial for action recognition tasks. The previous works use 3D CNNs to jointly capture spatiotemporal information, but it causes a lot of computational costs as well. To improve the above problems, we propose a general channel split spatiotemporal network (CSST-Net) to achieve effective spatiotemporal feature representation learning. The CSST module consists of the grouped spatiotemporal modeling (GSTM) module and the parameter-free feature fusion (PFFF) module. The GSTM module decomposes features into spatial and temporal parts along the channel dimension in parallel, which focuses on spatial and temporal clues respectively. Meanwhile, we utilize the combination of group-wise convolution and point-wise convolution to reduce the number of parameters in the temporal branch, thus alleviating the overfitting of 3D CNNs. Furthermore, for the problem of spatiotemporal feature fusion, the PFFF module performs the recalibration and fusion of spatial and temporal features by a soft attention mechanism, without introducing extra parameters, thus ensuring the correct network information flow effectively. Finally, extensive experiments on three benchmark databases (Sth-Sth V1, Sth-Sth V2, and Jester) indicate that the proposed CSST-Net can achieve competitive performance compared to existing methods, and significantly reduces the number of parameters and FLOPs of 3D CNNs baseline.","PeriodicalId":54982,"journal":{"name":"Information Technology and Control","volume":"83 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CSST-Net: Channel Split Spatiotemporal Network for Human Action Recognition\",\"authors\":\"Xuan Zhou, Jixiang Ma, Jianping Yi\",\"doi\":\"10.5755/j01.itc.52.4.33239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal reasoning is crucial for action recognition tasks. The previous works use 3D CNNs to jointly capture spatiotemporal information, but it causes a lot of computational costs as well. To improve the above problems, we propose a general channel split spatiotemporal network (CSST-Net) to achieve effective spatiotemporal feature representation learning. The CSST module consists of the grouped spatiotemporal modeling (GSTM) module and the parameter-free feature fusion (PFFF) module. The GSTM module decomposes features into spatial and temporal parts along the channel dimension in parallel, which focuses on spatial and temporal clues respectively. Meanwhile, we utilize the combination of group-wise convolution and point-wise convolution to reduce the number of parameters in the temporal branch, thus alleviating the overfitting of 3D CNNs. Furthermore, for the problem of spatiotemporal feature fusion, the PFFF module performs the recalibration and fusion of spatial and temporal features by a soft attention mechanism, without introducing extra parameters, thus ensuring the correct network information flow effectively. Finally, extensive experiments on three benchmark databases (Sth-Sth V1, Sth-Sth V2, and Jester) indicate that the proposed CSST-Net can achieve competitive performance compared to existing methods, and significantly reduces the number of parameters and FLOPs of 3D CNNs baseline.\",\"PeriodicalId\":54982,\"journal\":{\"name\":\"Information Technology and Control\",\"volume\":\"83 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Technology and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5755/j01.itc.52.4.33239\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Technology and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5755/j01.itc.52.4.33239","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

时间推理对于动作识别任务至关重要。以往的研究使用三维 CNN 来联合捕捉时空信息,但这也造成了大量的计算成本。为了改善上述问题,我们提出了一种通用通道分裂时空网络(CSST-Net),以实现有效的时空特征表征学习。CSST 模块由分组时空建模(GSTM)模块和无参数特征融合(PFFF)模块组成。分组时空建模模块将特征沿信道维度平行分解为空间和时间部分,分别侧重于空间和时间线索。同时,我们利用分组卷积和点卷积相结合的方法来减少时间分支的参数数量,从而减轻三维 CNN 的过拟合问题。此外,针对时空特征融合问题,PFFF 模块通过软关注机制执行时空特征的重新校准和融合,而不引入额外参数,从而有效确保了正确的网络信息流。最后,在三个基准数据库(Sth-Sth V1、Sth-Sth V2 和 Jester)上进行的大量实验表明,与现有方法相比,所提出的 CSST-Net 可实现具有竞争力的性能,并显著减少了 3D CNN 基线的参数数量和 FLOPs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CSST-Net: Channel Split Spatiotemporal Network for Human Action Recognition
Temporal reasoning is crucial for action recognition tasks. The previous works use 3D CNNs to jointly capture spatiotemporal information, but it causes a lot of computational costs as well. To improve the above problems, we propose a general channel split spatiotemporal network (CSST-Net) to achieve effective spatiotemporal feature representation learning. The CSST module consists of the grouped spatiotemporal modeling (GSTM) module and the parameter-free feature fusion (PFFF) module. The GSTM module decomposes features into spatial and temporal parts along the channel dimension in parallel, which focuses on spatial and temporal clues respectively. Meanwhile, we utilize the combination of group-wise convolution and point-wise convolution to reduce the number of parameters in the temporal branch, thus alleviating the overfitting of 3D CNNs. Furthermore, for the problem of spatiotemporal feature fusion, the PFFF module performs the recalibration and fusion of spatial and temporal features by a soft attention mechanism, without introducing extra parameters, thus ensuring the correct network information flow effectively. Finally, extensive experiments on three benchmark databases (Sth-Sth V1, Sth-Sth V2, and Jester) indicate that the proposed CSST-Net can achieve competitive performance compared to existing methods, and significantly reduces the number of parameters and FLOPs of 3D CNNs baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Technology and Control
Information Technology and Control 工程技术-计算机:人工智能
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
12 months
期刊介绍: Periodical journal covers a wide field of computer science and control systems related problems including: -Software and hardware engineering; -Management systems engineering; -Information systems and databases; -Embedded systems; -Physical systems modelling and application; -Computer networks and cloud computing; -Data visualization; -Human-computer interface; -Computer graphics, visual analytics, and multimedia systems.
期刊最新文献
Model construction of big data asset management system for digital power grid regulation Melanoma Diagnosis Using Enhanced Faster Region Convolutional Neural Networks Optimized by Artificial Gorilla Troops Algorithm A Scalable and Stacked Ensemble Approach to Improve Intrusion Detection in Clouds Traffic Sign Detection Algorithm Based on Improved Yolox Apply Physical System Model and Computer Algorithm to Identify Osmanthus Fragrans Seed Vigor Based on Hyperspectral Imaging and Convolutional Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1