{"title":"利用多模型回归分析风能曲线建模","authors":"Vivek Kumar Patidar, Rajesh Wadhvani, Muktesh Gupta","doi":"10.1177/0309524x231214141","DOIUrl":null,"url":null,"abstract":"Wind power prediction is vital in renewable energy. Correct forecasts enable utility companies to optimize production and minimize costs. However, due to the intricate nature of wind patterns, making precise predictions is challenging. This article introduces a novel model combining Quantile Regression and Decision Tree Regression for forecasting wind energy. Trained on historical wind speed and output data, the model’s efficacy is assessed using metrics like mean absolute error and root mean squared error. The model is evaluated using the SCADA Turkey dataset, a prominent benchmark in wind forecasting. Preliminary results demonstrate the combined model’s superior predictive accuracy over traditional regression models, highlighting its potential for enhanced wind energy forecasting.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"46 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of wind power curve modeling using multi-model regression\",\"authors\":\"Vivek Kumar Patidar, Rajesh Wadhvani, Muktesh Gupta\",\"doi\":\"10.1177/0309524x231214141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wind power prediction is vital in renewable energy. Correct forecasts enable utility companies to optimize production and minimize costs. However, due to the intricate nature of wind patterns, making precise predictions is challenging. This article introduces a novel model combining Quantile Regression and Decision Tree Regression for forecasting wind energy. Trained on historical wind speed and output data, the model’s efficacy is assessed using metrics like mean absolute error and root mean squared error. The model is evaluated using the SCADA Turkey dataset, a prominent benchmark in wind forecasting. Preliminary results demonstrate the combined model’s superior predictive accuracy over traditional regression models, highlighting its potential for enhanced wind energy forecasting.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"46 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524x231214141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231214141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Analysis of wind power curve modeling using multi-model regression
Wind power prediction is vital in renewable energy. Correct forecasts enable utility companies to optimize production and minimize costs. However, due to the intricate nature of wind patterns, making precise predictions is challenging. This article introduces a novel model combining Quantile Regression and Decision Tree Regression for forecasting wind energy. Trained on historical wind speed and output data, the model’s efficacy is assessed using metrics like mean absolute error and root mean squared error. The model is evaluated using the SCADA Turkey dataset, a prominent benchmark in wind forecasting. Preliminary results demonstrate the combined model’s superior predictive accuracy over traditional regression models, highlighting its potential for enhanced wind energy forecasting.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.