{"title":"超快光发射电子显微镜:非平衡物理学的多维探针","authors":"Yanan Dai","doi":"10.1088/1674-1056/ad174a","DOIUrl":null,"url":null,"abstract":"Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research. It aims to unravel the intricate processes involving the excitations, interactions, and annihilations of quasi- and many-body particles, and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales. Given the inherent complexities arising from many-body dynamics, it therefore seeks for a technique that has efficient and diverse detection degrees of freedoms to study the underlying physics. By combining high-power femtosecond lasers with real- or momentum-space photoemission electron microscopy (PEEM), imaging excited state phenomena from multiple perspectives, including time, real space, energy, momentum, and spin, can be conveniently achieved, making it a unique technique in studying physics out of equilibrium. In this context, we overview the working principle and technical advances of the PEEM apparatus and the related laser systems, and survey key excited-state phenomena probed through this surface-sensitive methodology, including the ultrafast dynamics of electrons, excitons, plasmons, and spins etc., in materials ranging from bulk and nano-structured metals and semiconductors to low dimensional quantum materials. Through this review, one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space, offering unprecedented and comprehensive insights to important questions in the field of condensed matter physics.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":"16 11","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Photoemission Electron Microscopy: A multidimensional probe of nonequilibrium physics\",\"authors\":\"Yanan Dai\",\"doi\":\"10.1088/1674-1056/ad174a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research. It aims to unravel the intricate processes involving the excitations, interactions, and annihilations of quasi- and many-body particles, and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales. Given the inherent complexities arising from many-body dynamics, it therefore seeks for a technique that has efficient and diverse detection degrees of freedoms to study the underlying physics. By combining high-power femtosecond lasers with real- or momentum-space photoemission electron microscopy (PEEM), imaging excited state phenomena from multiple perspectives, including time, real space, energy, momentum, and spin, can be conveniently achieved, making it a unique technique in studying physics out of equilibrium. In this context, we overview the working principle and technical advances of the PEEM apparatus and the related laser systems, and survey key excited-state phenomena probed through this surface-sensitive methodology, including the ultrafast dynamics of electrons, excitons, plasmons, and spins etc., in materials ranging from bulk and nano-structured metals and semiconductors to low dimensional quantum materials. Through this review, one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space, offering unprecedented and comprehensive insights to important questions in the field of condensed matter physics.\",\"PeriodicalId\":10253,\"journal\":{\"name\":\"Chinese Physics B\",\"volume\":\"16 11\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1056/ad174a\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad174a","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrafast Photoemission Electron Microscopy: A multidimensional probe of nonequilibrium physics
Exploring the realms of physics that extend beyond thermal equilibrium has emerged as a crucial branch of condensed matter physics research. It aims to unravel the intricate processes involving the excitations, interactions, and annihilations of quasi- and many-body particles, and ultimately to achieve the manipulation and engineering of exotic non-equilibrium quantum phases on the ultrasmall and ultrafast spatiotemporal scales. Given the inherent complexities arising from many-body dynamics, it therefore seeks for a technique that has efficient and diverse detection degrees of freedoms to study the underlying physics. By combining high-power femtosecond lasers with real- or momentum-space photoemission electron microscopy (PEEM), imaging excited state phenomena from multiple perspectives, including time, real space, energy, momentum, and spin, can be conveniently achieved, making it a unique technique in studying physics out of equilibrium. In this context, we overview the working principle and technical advances of the PEEM apparatus and the related laser systems, and survey key excited-state phenomena probed through this surface-sensitive methodology, including the ultrafast dynamics of electrons, excitons, plasmons, and spins etc., in materials ranging from bulk and nano-structured metals and semiconductors to low dimensional quantum materials. Through this review, one can further envision that time-resolved PEEM will open new avenues for investigating a variety of classical and quantum phenomena in a multidimensional parameter space, offering unprecedented and comprehensive insights to important questions in the field of condensed matter physics.
期刊介绍:
Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics.
Subject coverage includes:
Condensed matter physics and the physics of materials
Atomic, molecular and optical physics
Statistical, nonlinear and soft matter physics
Plasma physics
Interdisciplinary physics.