基于废水的流行病学综合开源数据模型

J. Therrien, Mathew Thomson, Eugen-Sorin Sion, Ivan Lee, T. Maere, Niels Nicolaï, Douglas G. Manuel, Peter A. Vanrolleghem
{"title":"基于废水的流行病学综合开源数据模型","authors":"J. Therrien, Mathew Thomson, Eugen-Sorin Sion, Ivan Lee, T. Maere, Niels Nicolaï, Douglas G. Manuel, Peter A. Vanrolleghem","doi":"10.2166/wst.2023.409","DOIUrl":null,"url":null,"abstract":"The recent SARS-COV-2 pandemic has sparked the adoption of wastewater-based epidemiology (WBE) as a low-cost way to monitor the health of populations. In parallel, the pandemic has encouraged researchers to openly share their data to serve the public better and accelerate science. However, environmental surveillance data is highly dependent on context and is difficult to interpret meaningfully across sites. This paper presents the second iteration of the Public Health Environmental Surveillance Open Data Model (PHES-ODM), an open-source dictionary and set of data tools to enhance the interoperability of environmental surveillance data and enable the storage of contextual (meta)data. The data model describes how to store environmental surveillance program data, metadata about measurements taken on various specimens (water, air, surfaces, sites, populations) and data about measurement protocols. The model provides software tools that support the collection and use of PHES-ODM formatted data, including performing PCR calculations and data validation, recording data into input templates, generating wide tables for analysis, and producing SQL database definitions. Fully open-source and already adopted by institutions in Canada, the European Union, and other countries, the PHES-ODM provides a path forward for creating robust, interoperable, open datasets for environmental public health surveillance for SARS-CoV-2 and beyond.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive, open-source data model for wastewater-based epidemiology\",\"authors\":\"J. Therrien, Mathew Thomson, Eugen-Sorin Sion, Ivan Lee, T. Maere, Niels Nicolaï, Douglas G. Manuel, Peter A. Vanrolleghem\",\"doi\":\"10.2166/wst.2023.409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent SARS-COV-2 pandemic has sparked the adoption of wastewater-based epidemiology (WBE) as a low-cost way to monitor the health of populations. In parallel, the pandemic has encouraged researchers to openly share their data to serve the public better and accelerate science. However, environmental surveillance data is highly dependent on context and is difficult to interpret meaningfully across sites. This paper presents the second iteration of the Public Health Environmental Surveillance Open Data Model (PHES-ODM), an open-source dictionary and set of data tools to enhance the interoperability of environmental surveillance data and enable the storage of contextual (meta)data. The data model describes how to store environmental surveillance program data, metadata about measurements taken on various specimens (water, air, surfaces, sites, populations) and data about measurement protocols. The model provides software tools that support the collection and use of PHES-ODM formatted data, including performing PCR calculations and data validation, recording data into input templates, generating wide tables for analysis, and producing SQL database definitions. Fully open-source and already adopted by institutions in Canada, the European Union, and other countries, the PHES-ODM provides a path forward for creating robust, interoperable, open datasets for environmental public health surveillance for SARS-CoV-2 and beyond.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2023.409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2023.409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的 SARS-COV-2 大流行激发了人们对基于废水的流行病学(WBE)的采用,并将其作为监测人群健康状况的一种低成本方法。与此同时,这次疫情也鼓励研究人员公开共享数据,以便更好地为公众服务并加速科学发展。然而,环境监测数据在很大程度上取决于具体情况,很难在不同地点进行有意义的解释。本文介绍了公共卫生环境监测开放数据模型(PHES-ODM)的第二次迭代,这是一个开源字典和一套数据工具,旨在增强环境监测数据的互操作性,并实现上下文(元)数据的存储。该数据模型描述了如何存储环境监测计划数据、对各种样本(水、空气、表面、地点、人群)进行测量的元数据以及测量协议数据。该模型提供的软件工具可支持 PHES-ODM 格式数据的收集和使用,包括执行 PCR 计算和数据验证、将数据记录到输入模板中、生成用于分析的宽表以及生成 SQL 数据库定义。PHES-ODM 完全开放源码,已被加拿大、欧盟和其他国家的机构采用,它为创建稳健、可互操作的开放式数据集提供了一条前进的道路,用于 SARS-CoV-2 及其他病毒的环境公共卫生监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive, open-source data model for wastewater-based epidemiology
The recent SARS-COV-2 pandemic has sparked the adoption of wastewater-based epidemiology (WBE) as a low-cost way to monitor the health of populations. In parallel, the pandemic has encouraged researchers to openly share their data to serve the public better and accelerate science. However, environmental surveillance data is highly dependent on context and is difficult to interpret meaningfully across sites. This paper presents the second iteration of the Public Health Environmental Surveillance Open Data Model (PHES-ODM), an open-source dictionary and set of data tools to enhance the interoperability of environmental surveillance data and enable the storage of contextual (meta)data. The data model describes how to store environmental surveillance program data, metadata about measurements taken on various specimens (water, air, surfaces, sites, populations) and data about measurement protocols. The model provides software tools that support the collection and use of PHES-ODM formatted data, including performing PCR calculations and data validation, recording data into input templates, generating wide tables for analysis, and producing SQL database definitions. Fully open-source and already adopted by institutions in Canada, the European Union, and other countries, the PHES-ODM provides a path forward for creating robust, interoperable, open datasets for environmental public health surveillance for SARS-CoV-2 and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to integrate CCHP systems with desalination for sustainable energy and water solutions in educational buildings Metal–organic framework-derived carbon-based evaporator for activating persulfate to remove phenol in interfacial solar distillation Optimizing wastewater treatment through artificial intelligence: recent advances and future prospects The role of hyetograph shape and designer subjectivity in the design of a urban drainage system Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1