通过 HPLC-PDA 检测从黄连中分离出的 12 种次生代谢物的多组分同步定量分析方法的开发与验证

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL Separations Pub Date : 2023-12-18 DOI:10.3390/separations10120601
Jin Sung Ahn, WanKyunn Whang
{"title":"通过 HPLC-PDA 检测从黄连中分离出的 12 种次生代谢物的多组分同步定量分析方法的开发与验证","authors":"Jin Sung Ahn, WanKyunn Whang","doi":"10.3390/separations10120601","DOIUrl":null,"url":null,"abstract":"Drynariae Rhizoma (DR) is a functional food and traditional medicine that has been widely used for bone and joint disorders for thousands of years. In this study, 14 compounds were isolated from DR, and their structures were identified using UPLC/QTOF–MS, UPLC–ESI/LTQ–Orbitrap–HRMS, and 2D NMR and compared with those obtained in previous studies. An HPLC–PDA multi-component simultaneous quantitative determination method was developed for 12 of the 14 DR-derived compounds, excluding compounds with a content <1.5 mg. The developed HPLC method was validated based on linearity (r2 ≥ 0.999), limit of detection (0.01–0.65 μg/mL), limit of quantification (0.04–1.97 μg/mL), intra-day precision and accuracy ranges (0.06–2.85% and 95.03–104.75%, respectively), and inter-day precision and accuracy ranges (0.24–2.83% and 95.75–105.75%, respectively). The developed analysis method improved the resolution of compounds 4 and 5. In addition, this is the first quantitative analysis of compounds 7, 8, and 11 and the first simultaneous quantitative analysis of 12 compounds, including compounds 4, 7, 8, 10, 11, and 14. This study developed a rapid, accurate, and economical HPLC method for performing the simultaneous quantitative analysis of 12 secondary metabolites isolated from DR.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma\",\"authors\":\"Jin Sung Ahn, WanKyunn Whang\",\"doi\":\"10.3390/separations10120601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drynariae Rhizoma (DR) is a functional food and traditional medicine that has been widely used for bone and joint disorders for thousands of years. In this study, 14 compounds were isolated from DR, and their structures were identified using UPLC/QTOF–MS, UPLC–ESI/LTQ–Orbitrap–HRMS, and 2D NMR and compared with those obtained in previous studies. An HPLC–PDA multi-component simultaneous quantitative determination method was developed for 12 of the 14 DR-derived compounds, excluding compounds with a content <1.5 mg. The developed HPLC method was validated based on linearity (r2 ≥ 0.999), limit of detection (0.01–0.65 μg/mL), limit of quantification (0.04–1.97 μg/mL), intra-day precision and accuracy ranges (0.06–2.85% and 95.03–104.75%, respectively), and inter-day precision and accuracy ranges (0.24–2.83% and 95.75–105.75%, respectively). The developed analysis method improved the resolution of compounds 4 and 5. In addition, this is the first quantitative analysis of compounds 7, 8, and 11 and the first simultaneous quantitative analysis of 12 compounds, including compounds 4, 7, 8, 10, 11, and 14. This study developed a rapid, accurate, and economical HPLC method for performing the simultaneous quantitative analysis of 12 secondary metabolites isolated from DR.\",\"PeriodicalId\":21833,\"journal\":{\"name\":\"Separations\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/separations10120601\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations10120601","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

黄连(DR)是一种功能性食品和传统药物,数千年来一直被广泛用于治疗骨关节疾病。本研究从旱莲草中分离出 14 种化合物,采用 UPLC/QTOF-MS、UPLC-ESI/LTQ-Orbitrap-HRMS 和 2D NMR 对其结构进行了鉴定,并与之前的研究结果进行了比较。针对 14 种 DR 衍生化合物中的 12 种(不包括含量小于 1.5 毫克的化合物),开发了 HPLC-PDA 多组分同时定量测定方法。该方法的线性范围(r2 ≥ 0.999)、检出限(0.01-0.65 μg/mL)、定量限(0.04-1.97 μg/mL)、日内精密度和准确度范围(分别为0.06-2.85%和95.03-104.75%)以及日间精密度和准确度范围(分别为0.24-2.83%和95.75-105.75%)均得到了验证。所开发的分析方法提高了化合物 4 和 5 的分辨率。此外,这是首次对化合物 7、8 和 11 进行定量分析,也是首次对包括化合物 4、7、8、10、11 和 14 在内的 12 种化合物同时进行定量分析。本研究开发了一种快速、准确、经济的高效液相色谱法,用于同时定量分析从 DR 中分离出的 12 种次生代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Development and Validation of Simultaneous Multi-Component Quantitative Analysis via HPLC–PDA Detection of 12 Secondary Metabolites Isolated from Drynariae Rhizoma
Drynariae Rhizoma (DR) is a functional food and traditional medicine that has been widely used for bone and joint disorders for thousands of years. In this study, 14 compounds were isolated from DR, and their structures were identified using UPLC/QTOF–MS, UPLC–ESI/LTQ–Orbitrap–HRMS, and 2D NMR and compared with those obtained in previous studies. An HPLC–PDA multi-component simultaneous quantitative determination method was developed for 12 of the 14 DR-derived compounds, excluding compounds with a content <1.5 mg. The developed HPLC method was validated based on linearity (r2 ≥ 0.999), limit of detection (0.01–0.65 μg/mL), limit of quantification (0.04–1.97 μg/mL), intra-day precision and accuracy ranges (0.06–2.85% and 95.03–104.75%, respectively), and inter-day precision and accuracy ranges (0.24–2.83% and 95.75–105.75%, respectively). The developed analysis method improved the resolution of compounds 4 and 5. In addition, this is the first quantitative analysis of compounds 7, 8, and 11 and the first simultaneous quantitative analysis of 12 compounds, including compounds 4, 7, 8, 10, 11, and 14. This study developed a rapid, accurate, and economical HPLC method for performing the simultaneous quantitative analysis of 12 secondary metabolites isolated from DR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
期刊最新文献
Effective Utilization of Sulfur Wastewater by Photocatalytic System Using B/CuO/ZnO A Cyanoalkyl Silicone GC Stationary-Phase Polymer as an Extractant for Dispersive Liquid–Liquid Microextraction Central European Group for Separation Sciences (CEGSS)—Brief History and Memoirs on the Creation and Activity Effect of Fly Ash on the Mass Transfer Performance of CO2 Removal Using MEA and DEA Solutions in a Packed Tower Adsorption Performance and Mechanism of H3PO4-Modified Banana Peel Hydrothermal Carbon on Pb(II)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1