遥感图像深度学习物体检测方法综述

Xueying Wang, Weishan Lu, Feng Zhang, Yuan D. Huang, Zhichao Sha, Shilin Zhou
{"title":"遥感图像深度学习物体检测方法综述","authors":"Xueying Wang, Weishan Lu, Feng Zhang, Yuan D. Huang, Zhichao Sha, Shilin Zhou","doi":"10.1117/12.3008145","DOIUrl":null,"url":null,"abstract":"With the improvement of hardware computing power, the application of deep learning methods in the field of remote sensing is increasing. This paper summarizes the progress of deep learning methods in remote sensing image object detection in recent years. The main methods of deep learning methods to extract and use target feature information in various target detection tasks are summarized. Finally, the application trend of deep learning methods in the field of remote sensing image detection is prospected.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"50 8","pages":"129631Q - 129631Q-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of deep learning object detection methods for remote sensing images\",\"authors\":\"Xueying Wang, Weishan Lu, Feng Zhang, Yuan D. Huang, Zhichao Sha, Shilin Zhou\",\"doi\":\"10.1117/12.3008145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the improvement of hardware computing power, the application of deep learning methods in the field of remote sensing is increasing. This paper summarizes the progress of deep learning methods in remote sensing image object detection in recent years. The main methods of deep learning methods to extract and use target feature information in various target detection tasks are summarized. Finally, the application trend of deep learning methods in the field of remote sensing image detection is prospected.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"50 8\",\"pages\":\"129631Q - 129631Q-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3008145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3008145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着硬件计算能力的提高,深度学习方法在遥感领域的应用日益增多。本文总结了近年来深度学习方法在遥感图像目标检测中的进展。总结了深度学习方法在各种目标检测任务中提取和使用目标特征信息的主要方法。最后,展望了深度学习方法在遥感图像检测领域的应用趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of deep learning object detection methods for remote sensing images
With the improvement of hardware computing power, the application of deep learning methods in the field of remote sensing is increasing. This paper summarizes the progress of deep learning methods in remote sensing image object detection in recent years. The main methods of deep learning methods to extract and use target feature information in various target detection tasks are summarized. Finally, the application trend of deep learning methods in the field of remote sensing image detection is prospected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nuclear materials using portable laser-induced plasma spectroscopy 1319 nm single-frequency injection seeded Q-switched laser based on ramp-hold-fire Interference lithography based on a phase mask for the fabrication of diffraction gratings Busyness level-based deep reinforcement learning method for routing, modulation, and spectrum assignment of elastic optical networks Research on A/D driver circuit level nonuniformity correction technology based on machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1