{"title":"用 Verilog-A 进行光电集成电路协同仿真","authors":"Hao Fang, Lingxiao Wu, Xiao Xu, L. Du, Jia Zhao","doi":"10.1117/12.3006027","DOIUrl":null,"url":null,"abstract":"As the complexity of optoelectronic integrated circuits (OEICs) develop, the need for an accurate and efficient compatible simulation environment that supports both photonics and electronics becomes increasingly critical. This paper addresses the demand by proposing an approach that leverages Verilog-A language to build equivalent circuit models and compact models for photonic devices. Passive components, including couplers and waveguides, are modeled using compact models. Active components, such as CW lasers, are realized through the adoption of equivalent circuit models. Additionally, a depletion-type phase shifter is separated in two parts: the electrical part for parasitic parameters and the p-n junction are presented with RC components, while the optical characteristics, influenced by electrical modulation, are achieved through the use of compact models. The proposed compatible system design scheme, which consists of Verilog-A models, can be analyzed in the frequency-domain using EDA software. The simulation results demonstrate a mean absolute percentage error (MAPE) of less than 0.003% when compared to those obtained from commercial interoperable design software. Therefore, this study effectively addresses the challenge of incompatible design and simulation for OEIC, and providing strong evidence that OEIC design can be achieved in a unified EDA platform.","PeriodicalId":502341,"journal":{"name":"Applied Optics and Photonics China","volume":"128 ","pages":"129660T - 129660T-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optoelectronic integrated circuits co-simulation in Verilog-A\",\"authors\":\"Hao Fang, Lingxiao Wu, Xiao Xu, L. Du, Jia Zhao\",\"doi\":\"10.1117/12.3006027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the complexity of optoelectronic integrated circuits (OEICs) develop, the need for an accurate and efficient compatible simulation environment that supports both photonics and electronics becomes increasingly critical. This paper addresses the demand by proposing an approach that leverages Verilog-A language to build equivalent circuit models and compact models for photonic devices. Passive components, including couplers and waveguides, are modeled using compact models. Active components, such as CW lasers, are realized through the adoption of equivalent circuit models. Additionally, a depletion-type phase shifter is separated in two parts: the electrical part for parasitic parameters and the p-n junction are presented with RC components, while the optical characteristics, influenced by electrical modulation, are achieved through the use of compact models. The proposed compatible system design scheme, which consists of Verilog-A models, can be analyzed in the frequency-domain using EDA software. The simulation results demonstrate a mean absolute percentage error (MAPE) of less than 0.003% when compared to those obtained from commercial interoperable design software. Therefore, this study effectively addresses the challenge of incompatible design and simulation for OEIC, and providing strong evidence that OEIC design can be achieved in a unified EDA platform.\",\"PeriodicalId\":502341,\"journal\":{\"name\":\"Applied Optics and Photonics China\",\"volume\":\"128 \",\"pages\":\"129660T - 129660T-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Optics and Photonics China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Optics and Photonics China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optoelectronic integrated circuits co-simulation in Verilog-A
As the complexity of optoelectronic integrated circuits (OEICs) develop, the need for an accurate and efficient compatible simulation environment that supports both photonics and electronics becomes increasingly critical. This paper addresses the demand by proposing an approach that leverages Verilog-A language to build equivalent circuit models and compact models for photonic devices. Passive components, including couplers and waveguides, are modeled using compact models. Active components, such as CW lasers, are realized through the adoption of equivalent circuit models. Additionally, a depletion-type phase shifter is separated in two parts: the electrical part for parasitic parameters and the p-n junction are presented with RC components, while the optical characteristics, influenced by electrical modulation, are achieved through the use of compact models. The proposed compatible system design scheme, which consists of Verilog-A models, can be analyzed in the frequency-domain using EDA software. The simulation results demonstrate a mean absolute percentage error (MAPE) of less than 0.003% when compared to those obtained from commercial interoperable design software. Therefore, this study effectively addresses the challenge of incompatible design and simulation for OEIC, and providing strong evidence that OEIC design can be achieved in a unified EDA platform.