电场诱导水中空心颗粒快速上升

Powders Pub Date : 2023-12-12 DOI:10.3390/powders2040046
Hiroshi Kimura
{"title":"电场诱导水中空心颗粒快速上升","authors":"Hiroshi Kimura","doi":"10.3390/powders2040046","DOIUrl":null,"url":null,"abstract":"A novel method has been proposed to induce rapid upward movement of colloidal particles with a density lower than water by applying an electric field of several V/mm in water. This phenomenon, known as the Electrically Induced Rapid Sedimentation (ERS) effect, marks the first occurrence of ‘rapid upward movement of colloidal particles’ within the scope of this phenomenon. Focusing on hollow particles, an investigation of the ERS effect was conducted through transmittance measurement. The hollow particles in water showed a drastic increase in ascending velocity through the application of an electric field. The ascending velocity raised when increasing the electric field strength. Utilizing a quasi-DC electric field (an extremely low-frequency AC electric field), aggregate structures were captured for the first time.","PeriodicalId":507225,"journal":{"name":"Powders","volume":"261 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Ascent of Hollow Particles in Water Induced by an Electric Field\",\"authors\":\"Hiroshi Kimura\",\"doi\":\"10.3390/powders2040046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method has been proposed to induce rapid upward movement of colloidal particles with a density lower than water by applying an electric field of several V/mm in water. This phenomenon, known as the Electrically Induced Rapid Sedimentation (ERS) effect, marks the first occurrence of ‘rapid upward movement of colloidal particles’ within the scope of this phenomenon. Focusing on hollow particles, an investigation of the ERS effect was conducted through transmittance measurement. The hollow particles in water showed a drastic increase in ascending velocity through the application of an electric field. The ascending velocity raised when increasing the electric field strength. Utilizing a quasi-DC electric field (an extremely low-frequency AC electric field), aggregate structures were captured for the first time.\",\"PeriodicalId\":507225,\"journal\":{\"name\":\"Powders\",\"volume\":\"261 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powders\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/powders2040046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/powders2040046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有人提出了一种新方法,通过在水中施加几伏/毫米的电场,诱导密度低于水的胶体粒子快速上浮。这种现象被称为 "电诱导快速沉降(ERS)效应",标志着 "胶体微粒快速上升运动 "首次出现在这一现象的范围内。研究人员以空心颗粒为重点,通过透射率测量对 ERS 效应进行了研究。通过施加电场,水中的空心颗粒显示出急剧上升的速度。当电场强度增加时,上升速度也随之增加。利用准直流电场(频率极低的交流电场),首次捕捉到了聚集体结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Ascent of Hollow Particles in Water Induced by an Electric Field
A novel method has been proposed to induce rapid upward movement of colloidal particles with a density lower than water by applying an electric field of several V/mm in water. This phenomenon, known as the Electrically Induced Rapid Sedimentation (ERS) effect, marks the first occurrence of ‘rapid upward movement of colloidal particles’ within the scope of this phenomenon. Focusing on hollow particles, an investigation of the ERS effect was conducted through transmittance measurement. The hollow particles in water showed a drastic increase in ascending velocity through the application of an electric field. The ascending velocity raised when increasing the electric field strength. Utilizing a quasi-DC electric field (an extremely low-frequency AC electric field), aggregate structures were captured for the first time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractionation of Aerosols by Particle Size and Material Composition Using a Classifying Aerodynamic Lens Discrete Element Method Simulation of Particulate Material Fracture Behavior on a Stretchable Single Filter Fiber with Additional Gas Flow Consistency in Young’s Modulus of Powders: A Review with Experiments Size and Shape Selective Classification of Nanoparticles Multidimensional Separation by Magnetic Seeded Filtration: Theoretical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1