基于门机制的物体检测特征融合模块

Zepeng Sun, Dongyin Jin, Jian Deng, Mengyang Zhang, Zhenzhou Shao
{"title":"基于门机制的物体检测特征融合模块","authors":"Zepeng Sun, Dongyin Jin, Jian Deng, Mengyang Zhang, Zhenzhou Shao","doi":"10.1109/ROBIO58561.2023.10354575","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning based feature fusion has drawn significant attention in the field of information integration due to its robust representational and generative capabilities. However, existing methods struggle to effectively preserve essential information. To this end, this paper proposes a gate-based fusion module for object detection to integrate the information from distinct feature layers of convolutional neural networks. The gate structure of the fusion module adaptively selects features from neighboring layers, storing valuable information in memory units and passing it to the subsequent layer. This approach facilitates the fusion of high-level semantic and low-level detailed features. Experimental validation is conducted on the public Pascal VOC dataset. Experiments results demonstrate that the addition of the gate-based fusion module to the detection task leads to an average accuracy increment of up to 5%.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"17 6","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Fusion Module Based on Gate Mechanism for Object Detection\",\"authors\":\"Zepeng Sun, Dongyin Jin, Jian Deng, Mengyang Zhang, Zhenzhou Shao\",\"doi\":\"10.1109/ROBIO58561.2023.10354575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, deep learning based feature fusion has drawn significant attention in the field of information integration due to its robust representational and generative capabilities. However, existing methods struggle to effectively preserve essential information. To this end, this paper proposes a gate-based fusion module for object detection to integrate the information from distinct feature layers of convolutional neural networks. The gate structure of the fusion module adaptively selects features from neighboring layers, storing valuable information in memory units and passing it to the subsequent layer. This approach facilitates the fusion of high-level semantic and low-level detailed features. Experimental validation is conducted on the public Pascal VOC dataset. Experiments results demonstrate that the addition of the gate-based fusion module to the detection task leads to an average accuracy increment of up to 5%.\",\"PeriodicalId\":505134,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"17 6\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO58561.2023.10354575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,基于深度学习的特征融合因其强大的表征和生成能力而在信息整合领域备受关注。然而,现有的方法难以有效保留基本信息。为此,本文提出了一种基于门的物体检测融合模块,用于整合卷积神经网络不同特征层的信息。融合模块的门结构能自适应地选择相邻层的特征,将有价值的信息存储在内存单元中,并传递给后续层。这种方法有助于融合高层语义特征和低层细节特征。实验验证是在公开的 Pascal VOC 数据集上进行的。实验结果表明,在检测任务中添加基于门的融合模块后,平均准确率可提高 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Fusion Module Based on Gate Mechanism for Object Detection
In recent years, deep learning based feature fusion has drawn significant attention in the field of information integration due to its robust representational and generative capabilities. However, existing methods struggle to effectively preserve essential information. To this end, this paper proposes a gate-based fusion module for object detection to integrate the information from distinct feature layers of convolutional neural networks. The gate structure of the fusion module adaptively selects features from neighboring layers, storing valuable information in memory units and passing it to the subsequent layer. This approach facilitates the fusion of high-level semantic and low-level detailed features. Experimental validation is conducted on the public Pascal VOC dataset. Experiments results demonstrate that the addition of the gate-based fusion module to the detection task leads to an average accuracy increment of up to 5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1