通过磁性组装增强蛋白质微机器人的运动能力*

Xiangchao Liu, Zhongyi Song, Yuan Liu, Jing Huang, Haifeng Xu
{"title":"通过磁性组装增强蛋白质微机器人的运动能力*","authors":"Xiangchao Liu, Zhongyi Song, Yuan Liu, Jing Huang, Haifeng Xu","doi":"10.1109/ROBIO58561.2023.10354802","DOIUrl":null,"url":null,"abstract":"Magnetic microrobots are promising for biomedical applications in living organisms, thanks to their remote actuation and non-contact manipulation capabilities. However, controlling single microrobots one after another is technically inefficient. Previous studies showed swarm control of microrobots. Here we introduce a more direct strategy for enhancing the transport efficiency of microrobots by manipulating their assemblies. We present the control of a protein-based microbead system capable of forming magnetic micro-assemblies. By using rotating magnetic fields, we effectively realized the rolling motion of single microbeads, paired microbeads, and assemblies of multiple microbeads. Improved transport velocity is achieved by controlling the assembly of the multiple microrobots. The maximum velocity of the magnetic micro-assembly reaches 1014 μm/s, while the single microbead and micro-dimer is 203 μm/s and 726 μm/s, respectively. And the line coincidence of micro-assembly reaches 0.988. Our results highlight the potential of the controlling strategy based on magnetic assemblies for diverse biomedical applications. The direct control of such magnetic assemblies offers a simpler and more biocompatible solution for improving the transport efficiency of microrobots.","PeriodicalId":505134,"journal":{"name":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"106 12","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Locomotion of Protein-Based Microrobots via Magnetic Assemblies*\",\"authors\":\"Xiangchao Liu, Zhongyi Song, Yuan Liu, Jing Huang, Haifeng Xu\",\"doi\":\"10.1109/ROBIO58561.2023.10354802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic microrobots are promising for biomedical applications in living organisms, thanks to their remote actuation and non-contact manipulation capabilities. However, controlling single microrobots one after another is technically inefficient. Previous studies showed swarm control of microrobots. Here we introduce a more direct strategy for enhancing the transport efficiency of microrobots by manipulating their assemblies. We present the control of a protein-based microbead system capable of forming magnetic micro-assemblies. By using rotating magnetic fields, we effectively realized the rolling motion of single microbeads, paired microbeads, and assemblies of multiple microbeads. Improved transport velocity is achieved by controlling the assembly of the multiple microrobots. The maximum velocity of the magnetic micro-assembly reaches 1014 μm/s, while the single microbead and micro-dimer is 203 μm/s and 726 μm/s, respectively. And the line coincidence of micro-assembly reaches 0.988. Our results highlight the potential of the controlling strategy based on magnetic assemblies for diverse biomedical applications. The direct control of such magnetic assemblies offers a simpler and more biocompatible solution for improving the transport efficiency of microrobots.\",\"PeriodicalId\":505134,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"106 12\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO58561.2023.10354802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO58561.2023.10354802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁性微型机器人具有远程驱动和非接触操纵能力,因此在生物体内的生物医学应用中大有可为。然而,一个接一个地控制单个微机器人在技术上并不高效。以前的研究显示了微机器人的群控制。在这里,我们介绍了一种更直接的策略,即通过操纵微机器人的集合体来提高它们的运输效率。我们介绍了一种能够形成磁性微组装体的基于蛋白质的微珠系统控制方法。通过使用旋转磁场,我们有效地实现了单个微珠、成对微珠和多个微珠组合体的滚动运动。通过控制多个微机器人的组装,提高了传输速度。磁性微组装体的最大速度达到 1014 μm/s,而单个微珠和微二聚体的最大速度分别为 203 μm/s 和 726 μm/s。微组装的线重合度达到 0.988。我们的研究结果凸显了基于磁性组件的控制策略在各种生物医学应用中的潜力。对这种磁性组件的直接控制为提高微型机器人的运输效率提供了一种更简单、生物兼容性更强的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Locomotion of Protein-Based Microrobots via Magnetic Assemblies*
Magnetic microrobots are promising for biomedical applications in living organisms, thanks to their remote actuation and non-contact manipulation capabilities. However, controlling single microrobots one after another is technically inefficient. Previous studies showed swarm control of microrobots. Here we introduce a more direct strategy for enhancing the transport efficiency of microrobots by manipulating their assemblies. We present the control of a protein-based microbead system capable of forming magnetic micro-assemblies. By using rotating magnetic fields, we effectively realized the rolling motion of single microbeads, paired microbeads, and assemblies of multiple microbeads. Improved transport velocity is achieved by controlling the assembly of the multiple microrobots. The maximum velocity of the magnetic micro-assembly reaches 1014 μm/s, while the single microbead and micro-dimer is 203 μm/s and 726 μm/s, respectively. And the line coincidence of micro-assembly reaches 0.988. Our results highlight the potential of the controlling strategy based on magnetic assemblies for diverse biomedical applications. The direct control of such magnetic assemblies offers a simpler and more biocompatible solution for improving the transport efficiency of microrobots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Barometric Soft Tactile Sensor for Depth Independent Contact Localization Stability Margin Based Gait Design on Slopes for a Novel Reconfigurable Quadruped Robot with a Foldable Trunk Blind Walking Balance Control and Disturbance Rejection of the Bipedal Humanoid Robot Xiao-Man via Reinforcement Learning A Closed-Loop Multi-perspective Visual Servoing Approach with Reinforcement Learning Modeling and Analysis of Pipe External Surface Grinding Force using Cup-shaped Wire Brush
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1