自发对称破缺是一种自然规律

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Chemistry Journal of Moldova Pub Date : 2023-12-01 DOI:10.19261/cjm.2023.1098
Isaac Bersuker
{"title":"自发对称破缺是一种自然规律","authors":"Isaac Bersuker","doi":"10.19261/cjm.2023.1098","DOIUrl":null,"url":null,"abstract":"In a semi-review paper, it was discussed the notion of symmetry of polyatomic systems defined as invariance under transformations, and show that this important property of atomic matter is extremely vulnerable, and may undergo internal breakdown, subject to the presence of electronic degeneracy or pseudodegeneracy. First formulated by Landau, L. in 1934, later proved and published by Jahn and Teller, this Jahn-Teller effect (JTE) underwent tremendous developments with important applications in physics, chemistry, biology, and materials science. Less attention was paid to the roots of this phenomenon and its correct interpretation in the sense of its influence on observable properties. It is shown that electronic degeneracy and its extended form, called pseudodegeneracy, are actually the only source of spontaneous symmetry breaking (SSB) in nature, including all forms of matter, beginning with elementary particles, via nuclei, atoms, molecules, and solids. Theoretically, the vulnerability of the notion of symmetry is due to the fact that, following quantum mechanics, the separation of the motion of electrons and nuclei (and, similarly, the separation of motions of elementary particles) is approximate, and hence the classical notion of polyatomic space configuration is approximate too, with SSB as one of its main violation.","PeriodicalId":9922,"journal":{"name":"Chemistry Journal of Moldova","volume":"16 3","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous symmetry breaking as a law of nature\",\"authors\":\"Isaac Bersuker\",\"doi\":\"10.19261/cjm.2023.1098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a semi-review paper, it was discussed the notion of symmetry of polyatomic systems defined as invariance under transformations, and show that this important property of atomic matter is extremely vulnerable, and may undergo internal breakdown, subject to the presence of electronic degeneracy or pseudodegeneracy. First formulated by Landau, L. in 1934, later proved and published by Jahn and Teller, this Jahn-Teller effect (JTE) underwent tremendous developments with important applications in physics, chemistry, biology, and materials science. Less attention was paid to the roots of this phenomenon and its correct interpretation in the sense of its influence on observable properties. It is shown that electronic degeneracy and its extended form, called pseudodegeneracy, are actually the only source of spontaneous symmetry breaking (SSB) in nature, including all forms of matter, beginning with elementary particles, via nuclei, atoms, molecules, and solids. Theoretically, the vulnerability of the notion of symmetry is due to the fact that, following quantum mechanics, the separation of the motion of electrons and nuclei (and, similarly, the separation of motions of elementary particles) is approximate, and hence the classical notion of polyatomic space configuration is approximate too, with SSB as one of its main violation.\",\"PeriodicalId\":9922,\"journal\":{\"name\":\"Chemistry Journal of Moldova\",\"volume\":\"16 3\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Journal of Moldova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19261/cjm.2023.1098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Journal of Moldova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19261/cjm.2023.1098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在一篇半综述论文中,讨论了多原子系统的对称性概念,其定义是变换下的不变性,并指出原子物质的这一重要特性极其脆弱,可能会因电子变性或假变性的存在而发生内部崩溃。Jahn-Teller 效应(JTE)由兰道(Landau, L. )于 1934 年首次提出,后由扬恩(Jahn)和特勒(Teller)证明并发表,它在物理学、化学、生物学和材料科学领域都有重要应用,并取得了巨大发展。人们对这一现象的根源及其对可观测特性影响的正确解释关注较少。研究表明,电子变性及其扩展形式(称为假变性)实际上是自然界自发对称性破缺(SSB)的唯一来源,包括从基本粒子开始,到原子核、分子和固体等所有形式的物质。从理论上讲,对称性概念之所以脆弱,是因为根据量子力学,电子和原子核运动的分离(同样,基本粒子运动的分离)是近似的,因此经典的多原子空间构型概念也是近似的,而自发对称性破缺(SSB)则是其主要的违背之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spontaneous symmetry breaking as a law of nature
In a semi-review paper, it was discussed the notion of symmetry of polyatomic systems defined as invariance under transformations, and show that this important property of atomic matter is extremely vulnerable, and may undergo internal breakdown, subject to the presence of electronic degeneracy or pseudodegeneracy. First formulated by Landau, L. in 1934, later proved and published by Jahn and Teller, this Jahn-Teller effect (JTE) underwent tremendous developments with important applications in physics, chemistry, biology, and materials science. Less attention was paid to the roots of this phenomenon and its correct interpretation in the sense of its influence on observable properties. It is shown that electronic degeneracy and its extended form, called pseudodegeneracy, are actually the only source of spontaneous symmetry breaking (SSB) in nature, including all forms of matter, beginning with elementary particles, via nuclei, atoms, molecules, and solids. Theoretically, the vulnerability of the notion of symmetry is due to the fact that, following quantum mechanics, the separation of the motion of electrons and nuclei (and, similarly, the separation of motions of elementary particles) is approximate, and hence the classical notion of polyatomic space configuration is approximate too, with SSB as one of its main violation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry Journal of Moldova
Chemistry Journal of Moldova CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
0.90
自引率
20.00%
发文量
8
审稿时长
12 weeks
期刊介绍: "Chemistry Journal of Moldova. General, Industrial and Ecological Chemistry" seeks to publish experimental or theoretical research results of outstanding significance and timeliness in all fields of Chemistry, including Industrial and Ecological Chemistry. The main goal of this edition is strengthening the Chemical Society of Moldova, following development of research in Moldovan chemical institutions and promotion of their collaboration with international chemical community. Manuscripts are welcome from all countries.
期刊最新文献
On the calculation of lanthanide systems. The spectral parameters of praseodymium trivalent ion Spontaneous symmetry breaking as a law of nature Isothermal section of the La2O3-Lu2O33-Er2O3 ternary phase diagram at 1250°С Crystal structure and NMR spectroscopic characterization of 1,5-bis(2-hydroxy-3-methoxybenzylidene)carbonohydrazide Antioxidant properties of some plant extracts and effect of their addition on the oxidation stability of biodiesel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1