利用全切片图像和流式细胞仪对淋巴瘤进行多实例学习分类的多模态门控专家混合物

Noriaki Hashimoto , Hiroyuki Hanada , Hiroaki Miyoshi , Miharu Nagaishi , Kensaku Sato , Hidekata Hontani , Koichi Ohshima , Ichiro Takeuchi
{"title":"利用全切片图像和流式细胞仪对淋巴瘤进行多实例学习分类的多模态门控专家混合物","authors":"Noriaki Hashimoto ,&nbsp;Hiroyuki Hanada ,&nbsp;Hiroaki Miyoshi ,&nbsp;Miharu Nagaishi ,&nbsp;Kensaku Sato ,&nbsp;Hidekata Hontani ,&nbsp;Koichi Ohshima ,&nbsp;Ichiro Takeuchi","doi":"10.1016/j.jpi.2023.100359","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100359"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353923001736/pdfft?md5=7da710e168eb41e1143a4b0663efcd4f&pid=1-s2.0-S2153353923001736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow Cytometry for Multiple Instance Learning Classification of Lymphoma\",\"authors\":\"Noriaki Hashimoto ,&nbsp;Hiroyuki Hanada ,&nbsp;Hiroaki Miyoshi ,&nbsp;Miharu Nagaishi ,&nbsp;Kensaku Sato ,&nbsp;Hidekata Hontani ,&nbsp;Koichi Ohshima ,&nbsp;Ichiro Takeuchi\",\"doi\":\"10.1016/j.jpi.2023.100359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"15 \",\"pages\":\"Article 100359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2153353923001736/pdfft?md5=7da710e168eb41e1143a4b0663efcd4f&pid=1-s2.0-S2153353923001736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353923001736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一种基于深度学习的多模态分类方法,该方法利用全切片图像(WSI)作为主要图像数据,流式细胞术(FCM)数据作为辅助信息,用于数字病理学中的淋巴瘤诊断。在恶性淋巴瘤的病理诊断中,FCM 是诊断过程中非常有价值的辅助信息,为预测亚型的主要类别(超类别)提供了有用的见解。通过将图像和 FCM 数据同时纳入分类过程,我们可以开发出一种模仿病理学家诊断过程的方法,从而提高可解释性。为了将超类与子类之间的层次结构结合起来,所提出的方法采用了一种网络结构,该结构有效地结合了专家混合(MoE)和多实例学习(MIL)技术,其中 MIL 因其在数字病理学中处理 WSI 的有效性而得到广泛认可。拟议方法中的混合专家网络由一个用于超类分类的门控网络和多个用于(子)类分类的专家网络组成,每个超类都有专门的专家网络。为了评估我们方法的有效性,我们使用 600 个淋巴瘤病例进行了六类分类任务实验。所提出的方法达到了 72.3% 的分类准确率,超过了直接结合 FCM 和图像所达到的 69.5%,也超过了只使用图像的方法所达到的 70.2%。此外,MoE 和 MIL 中多重权重的组合可实现特定细胞和肿瘤区域的可视化,从而产生传统方法无法实现的高解释性模型。预计通过针对更多的类别和增加专家网络的数量,所提出的方法可以有效地应用于淋巴瘤诊断的实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow Cytometry for Multiple Instance Learning Classification of Lymphoma

In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pathology Informatics
Journal of Pathology Informatics Medicine-Pathology and Forensic Medicine
CiteScore
3.70
自引率
0.00%
发文量
2
审稿时长
18 weeks
期刊介绍: The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.
期刊最新文献
Improving the generalizability of white blood cell classification with few-shot domain adaptation Pathology Informatics Summit 2024 Abstracts Ann Arbor Marriott at Eagle Crest Resort May 20-23, 2024 Ann Arbor, Michigan Deep learning-based classification of breast cancer molecular subtypes from H&E whole-slide images. Enhancing human phenotype ontology term extraction through synthetic case reports and embedding-based retrieval: A novel approach for improved biomedical data annotation. Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1