{"title":"利用全切片图像和流式细胞仪对淋巴瘤进行多实例学习分类的多模态门控专家混合物","authors":"Noriaki Hashimoto , Hiroyuki Hanada , Hiroaki Miyoshi , Miharu Nagaishi , Kensaku Sato , Hidekata Hontani , Koichi Ohshima , Ichiro Takeuchi","doi":"10.1016/j.jpi.2023.100359","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.</p></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"15 ","pages":"Article 100359"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2153353923001736/pdfft?md5=7da710e168eb41e1143a4b0663efcd4f&pid=1-s2.0-S2153353923001736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow Cytometry for Multiple Instance Learning Classification of Lymphoma\",\"authors\":\"Noriaki Hashimoto , Hiroyuki Hanada , Hiroaki Miyoshi , Miharu Nagaishi , Kensaku Sato , Hidekata Hontani , Koichi Ohshima , Ichiro Takeuchi\",\"doi\":\"10.1016/j.jpi.2023.100359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.</p></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"15 \",\"pages\":\"Article 100359\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2153353923001736/pdfft?md5=7da710e168eb41e1143a4b0663efcd4f&pid=1-s2.0-S2153353923001736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353923001736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353923001736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们提出了一种基于深度学习的多模态分类方法,该方法利用全切片图像(WSI)作为主要图像数据,流式细胞术(FCM)数据作为辅助信息,用于数字病理学中的淋巴瘤诊断。在恶性淋巴瘤的病理诊断中,FCM 是诊断过程中非常有价值的辅助信息,为预测亚型的主要类别(超类别)提供了有用的见解。通过将图像和 FCM 数据同时纳入分类过程,我们可以开发出一种模仿病理学家诊断过程的方法,从而提高可解释性。为了将超类与子类之间的层次结构结合起来,所提出的方法采用了一种网络结构,该结构有效地结合了专家混合(MoE)和多实例学习(MIL)技术,其中 MIL 因其在数字病理学中处理 WSI 的有效性而得到广泛认可。拟议方法中的混合专家网络由一个用于超类分类的门控网络和多个用于(子)类分类的专家网络组成,每个超类都有专门的专家网络。为了评估我们方法的有效性,我们使用 600 个淋巴瘤病例进行了六类分类任务实验。所提出的方法达到了 72.3% 的分类准确率,超过了直接结合 FCM 和图像所达到的 69.5%,也超过了只使用图像的方法所达到的 70.2%。此外,MoE 和 MIL 中多重权重的组合可实现特定细胞和肿瘤区域的可视化,从而产生传统方法无法实现的高解释性模型。预计通过针对更多的类别和增加专家网络的数量,所提出的方法可以有效地应用于淋巴瘤诊断的实际问题。
Multimodal Gated Mixture of Experts Using Whole Slide Image and Flow Cytometry for Multiple Instance Learning Classification of Lymphoma
In this study, we present a deep-learning-based multimodal classification method for lymphoma diagnosis in digital pathology, which utilizes a whole slide image (WSI) as the primary image data and flow cytometry (FCM) data as auxiliary information. In pathological diagnosis of malignant lymphoma, FCM serves as valuable auxiliary information during the diagnosis process, offering useful insights into predicting the major class (superclass) of subtypes. By incorporating both images and FCM data into the classification process, we can develop a method that mimics the diagnostic process of pathologists, enhancing the explainability. In order to incorporate the hierarchical structure between superclasses and their subclasses, the proposed method utilizes a network structure that effectively combines the mixture of experts (MoE) and multiple instance learning (MIL) techniques, where MIL is widely recognized for its effectiveness in handling WSIs in digital pathology. The MoE network in the proposed method consists of a gating network for superclass classification and multiple expert networks for (sub)class classification, specialized for each superclass. To evaluate the effectiveness of our method, we conducted experiments involving a six-class classification task using 600 lymphoma cases. The proposed method achieved a classification accuracy of 72.3%, surpassing the 69.5% obtained through the straightforward combination of FCM and images, as well as the 70.2% achieved by the method using only images. Moreover, the combination of multiple weights in the MoE and MIL allows for the visualization of specific cellular and tumor regions, resulting in a highly explanatory model that cannot be attained with conventional methods. It is anticipated that by targeting a larger number of classes and increasing the number of expert networks, the proposed method could be effectively applied to the real problem of lymphoma diagnosis.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.