Norazyan Rudi Hartono, Nabilah Afiqah Mohd Radzuan, Nisa Naima Khalid, A. Sulong
{"title":"高温下的 3D 打印碳纤维增强聚酰胺","authors":"Norazyan Rudi Hartono, Nabilah Afiqah Mohd Radzuan, Nisa Naima Khalid, A. Sulong","doi":"10.17576/jkukm-2023-35(6)-08","DOIUrl":null,"url":null,"abstract":"n additive manufacturing, polymer composites are often produced by using fuse deposition modeling (FDM) methods which usually have a clear effect on layer by layer due to incomplete bonding once it is been printed. FDM is one of the widely used 3D printing technology due to its fast printing speed and affordable cost. The mechanical characteristics of composite printed using the FDM technology are affected by the printing parameters of the FDM machine. The mechanical and tensile characteristics of polymer printed using FDM technology are also affected when it is exposed to high temperature. Therefore, this study is to identify the effect of high temperature towards the mechanical performance and tensile characteristics of FDM printed with 2 different printing temperature . A total of 18 samples with 2 different printing temperatures, are tested through a tensile test at temperature of 190°C, 200°C, and 210°C, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"65 19","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Printed Carbon Fibre Reinforced Polyamides in High Temperature\",\"authors\":\"Norazyan Rudi Hartono, Nabilah Afiqah Mohd Radzuan, Nisa Naima Khalid, A. Sulong\",\"doi\":\"10.17576/jkukm-2023-35(6)-08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"n additive manufacturing, polymer composites are often produced by using fuse deposition modeling (FDM) methods which usually have a clear effect on layer by layer due to incomplete bonding once it is been printed. FDM is one of the widely used 3D printing technology due to its fast printing speed and affordable cost. The mechanical characteristics of composite printed using the FDM technology are affected by the printing parameters of the FDM machine. The mechanical and tensile characteristics of polymer printed using FDM technology are also affected when it is exposed to high temperature. Therefore, this study is to identify the effect of high temperature towards the mechanical performance and tensile characteristics of FDM printed with 2 different printing temperature . A total of 18 samples with 2 different printing temperatures, are tested through a tensile test at temperature of 190°C, 200°C, and 210°C, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).\",\"PeriodicalId\":17688,\"journal\":{\"name\":\"Jurnal Kejuruteraan\",\"volume\":\"65 19\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kejuruteraan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/jkukm-2023-35(6)-08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(6)-08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
3D Printed Carbon Fibre Reinforced Polyamides in High Temperature
n additive manufacturing, polymer composites are often produced by using fuse deposition modeling (FDM) methods which usually have a clear effect on layer by layer due to incomplete bonding once it is been printed. FDM is one of the widely used 3D printing technology due to its fast printing speed and affordable cost. The mechanical characteristics of composite printed using the FDM technology are affected by the printing parameters of the FDM machine. The mechanical and tensile characteristics of polymer printed using FDM technology are also affected when it is exposed to high temperature. Therefore, this study is to identify the effect of high temperature towards the mechanical performance and tensile characteristics of FDM printed with 2 different printing temperature . A total of 18 samples with 2 different printing temperatures, are tested through a tensile test at temperature of 190°C, 200°C, and 210°C, scanning electron microscope (SEM), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA).