{"title":"基于心理生理信号小波变换的实用低维特征向量生成方法","authors":"Erdem Erkan, Yasemin Erkan","doi":"10.55730/1300-0632.4041","DOIUrl":null,"url":null,"abstract":": High-dimensional feature vectors entail computational cost and computational complexity. However, a successful classification can be obtained with an optimally sized feature vector consisting of distinctive features. With the widespread use of the internet and mobile devices, the need for systems with low computational costs is increasing day by day. In this study, starting from the idea that each motor imagery is represented as a subject-specific pattern in the brain, we propose a new and practical method that can generate a low-dimensional feature vector based on wavelet transform. The feature vector is obtained from the correlation between each trial and each class average. To investigate the effect of possible temporal shifts in the trial signals, the proposed method is analyzed with signal segments with different starting points and lengths. The effect of these signal segments on classification is shown. The proposed feature extraction approach is tested on two different datasets and the classification results are presented in comparison with previous studies. With the method proposed in this study, much lower-dimensional feature vectors are obtained compared to previous studies and very satisfactory results are obtained. It is observed that EEG signals related to motor imagery in the brain have a subject-specific pattern, and this pattern is successfully classified with a feature vector consisting of only 1 feature per class.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals\",\"authors\":\"Erdem Erkan, Yasemin Erkan\",\"doi\":\"10.55730/1300-0632.4041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": High-dimensional feature vectors entail computational cost and computational complexity. However, a successful classification can be obtained with an optimally sized feature vector consisting of distinctive features. With the widespread use of the internet and mobile devices, the need for systems with low computational costs is increasing day by day. In this study, starting from the idea that each motor imagery is represented as a subject-specific pattern in the brain, we propose a new and practical method that can generate a low-dimensional feature vector based on wavelet transform. The feature vector is obtained from the correlation between each trial and each class average. To investigate the effect of possible temporal shifts in the trial signals, the proposed method is analyzed with signal segments with different starting points and lengths. The effect of these signal segments on classification is shown. The proposed feature extraction approach is tested on two different datasets and the classification results are presented in comparison with previous studies. With the method proposed in this study, much lower-dimensional feature vectors are obtained compared to previous studies and very satisfactory results are obtained. It is observed that EEG signals related to motor imagery in the brain have a subject-specific pattern, and this pattern is successfully classified with a feature vector consisting of only 1 feature per class.\",\"PeriodicalId\":49410,\"journal\":{\"name\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Electrical Engineering and Computer Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0632.4041\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.55730/1300-0632.4041","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A practical low-dimensional feature vector generation method based on wavelet transform for psychophysiological signals
: High-dimensional feature vectors entail computational cost and computational complexity. However, a successful classification can be obtained with an optimally sized feature vector consisting of distinctive features. With the widespread use of the internet and mobile devices, the need for systems with low computational costs is increasing day by day. In this study, starting from the idea that each motor imagery is represented as a subject-specific pattern in the brain, we propose a new and practical method that can generate a low-dimensional feature vector based on wavelet transform. The feature vector is obtained from the correlation between each trial and each class average. To investigate the effect of possible temporal shifts in the trial signals, the proposed method is analyzed with signal segments with different starting points and lengths. The effect of these signal segments on classification is shown. The proposed feature extraction approach is tested on two different datasets and the classification results are presented in comparison with previous studies. With the method proposed in this study, much lower-dimensional feature vectors are obtained compared to previous studies and very satisfactory results are obtained. It is observed that EEG signals related to motor imagery in the brain have a subject-specific pattern, and this pattern is successfully classified with a feature vector consisting of only 1 feature per class.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.