铅对加标污染土壤强度行为的影响

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Kejuruteraan Pub Date : 2023-11-30 DOI:10.17576/jkukm-2023-35(6)-16
Mohamad Azwan Zahari, Muhammad Hafeez Osman, Salina Alias
{"title":"铅对加标污染土壤强度行为的影响","authors":"Mohamad Azwan Zahari, Muhammad Hafeez Osman, Salina Alias","doi":"10.17576/jkukm-2023-35(6)-16","DOIUrl":null,"url":null,"abstract":"Deterioration of geo-environmental quality caused by the heavy metal in contaminated soil leads to changes in physical, mechanical, and chemical properties of soil. It is important to study the effect of contamination of the geotechnical properties of soil. The main aim of this research is to study the impact of lead and incubation time on polluted soil compressibility. The soil samples were got from Kaolin Malaysia Sdn Bhd in Tapah Perak. The soil samples were spiked with two concentrations of lead nitrate (1000 mg/kg and 2000 mg/kg), and were incubated for 7, 14, 21, and 28 days. The contaminated samples were created using a mixture of distilled water and lead nitrate. The physical, mechanical, and chemical properties of control and contaminated samples were assessed to analyse the effect of lead nitrate on these properties. Lead nitrate causes the increasing of plastic limit and liquid limit, reduction of maximum dry density and optimum moisture content. In addition, the unconfined compressive strength was decreased by 4.2% for 1000mg/kg while 24.3% with 200 mg/kg. This is with increasing concentration of lead nitrate as well as incubation period. Collapsibility increases with increased concentration of lead nitrate and time of incubation due to increased compressibility capacity. The important thing about this study is to provide a database for the future development of the site area contaminated with heavy metals such as landfill, landfill, agriculture and industry.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Lead on Strength Behaviour for Spiked Contaminated Soil\",\"authors\":\"Mohamad Azwan Zahari, Muhammad Hafeez Osman, Salina Alias\",\"doi\":\"10.17576/jkukm-2023-35(6)-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterioration of geo-environmental quality caused by the heavy metal in contaminated soil leads to changes in physical, mechanical, and chemical properties of soil. It is important to study the effect of contamination of the geotechnical properties of soil. The main aim of this research is to study the impact of lead and incubation time on polluted soil compressibility. The soil samples were got from Kaolin Malaysia Sdn Bhd in Tapah Perak. The soil samples were spiked with two concentrations of lead nitrate (1000 mg/kg and 2000 mg/kg), and were incubated for 7, 14, 21, and 28 days. The contaminated samples were created using a mixture of distilled water and lead nitrate. The physical, mechanical, and chemical properties of control and contaminated samples were assessed to analyse the effect of lead nitrate on these properties. Lead nitrate causes the increasing of plastic limit and liquid limit, reduction of maximum dry density and optimum moisture content. In addition, the unconfined compressive strength was decreased by 4.2% for 1000mg/kg while 24.3% with 200 mg/kg. This is with increasing concentration of lead nitrate as well as incubation period. Collapsibility increases with increased concentration of lead nitrate and time of incubation due to increased compressibility capacity. The important thing about this study is to provide a database for the future development of the site area contaminated with heavy metals such as landfill, landfill, agriculture and industry.\",\"PeriodicalId\":17688,\"journal\":{\"name\":\"Jurnal Kejuruteraan\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kejuruteraan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/jkukm-2023-35(6)-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(6)-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

受污染土壤中的重金属会导致土壤的物理、机械和化学性质发生变化,从而导致地质环境质量恶化。研究污染对土壤岩土特性的影响非常重要。本研究的主要目的是研究铅和培养时间对污染土壤压缩性的影响。土壤样本取自霹雳州塔帕的马来西亚高岭土私人有限公司。土壤样本中添加了两种浓度的硝酸铅(1000 毫克/千克和 2000 毫克/千克),并分别培养了 7、14、21 和 28 天。受污染的样本是用蒸馏水和硝酸铅的混合物制成的。对对照样本和受污染样本的物理、机械和化学特性进行了评估,以分析硝酸铅对这些特性的影响。硝酸铅会导致塑限和液限增加,最大干密度和最佳含水量降低。此外,1000 毫克/千克的无压抗压强度降低了 4.2%,而 200 毫克/千克的无压抗压强度降低了 24.3%。这与硝酸铅浓度和培养期的增加有关。随着硝酸铅浓度和培养时间的增加,塌落度也会增加,这是因为压缩能力增加了。这项研究的重要意义在于为受重金属污染地区(如垃圾填埋场、垃圾填埋场、农业和工业)的未来发展提供一个数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Lead on Strength Behaviour for Spiked Contaminated Soil
Deterioration of geo-environmental quality caused by the heavy metal in contaminated soil leads to changes in physical, mechanical, and chemical properties of soil. It is important to study the effect of contamination of the geotechnical properties of soil. The main aim of this research is to study the impact of lead and incubation time on polluted soil compressibility. The soil samples were got from Kaolin Malaysia Sdn Bhd in Tapah Perak. The soil samples were spiked with two concentrations of lead nitrate (1000 mg/kg and 2000 mg/kg), and were incubated for 7, 14, 21, and 28 days. The contaminated samples were created using a mixture of distilled water and lead nitrate. The physical, mechanical, and chemical properties of control and contaminated samples were assessed to analyse the effect of lead nitrate on these properties. Lead nitrate causes the increasing of plastic limit and liquid limit, reduction of maximum dry density and optimum moisture content. In addition, the unconfined compressive strength was decreased by 4.2% for 1000mg/kg while 24.3% with 200 mg/kg. This is with increasing concentration of lead nitrate as well as incubation period. Collapsibility increases with increased concentration of lead nitrate and time of incubation due to increased compressibility capacity. The important thing about this study is to provide a database for the future development of the site area contaminated with heavy metals such as landfill, landfill, agriculture and industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
期刊最新文献
3D Printed Carbon Fibre Reinforced Polyamides in High Temperature An App for Parking with Indoor Navigation Facility Numerical Analysis of Structural Batteries Response with the Presence of Uncertainty Experimental Investigation of Mechanical and Microstructural Properties of Concrete Containing Bentonite and Dolomite as a Partial Replacement of Cement The Design of Stroke Rehabilitation Using Artificial Intelligence K.A.K.I (Kinesthetic Augmented Kinematic Inference)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1