利用升力线理论分析锥度比和膨胀段变化的机翼平面形状

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Kejuruteraan Pub Date : 2023-11-30 DOI:10.17576/jkukm-2023-35(6)-05
Amien S. Dafa, Gunawan Nugroho
{"title":"利用升力线理论分析锥度比和膨胀段变化的机翼平面形状","authors":"Amien S. Dafa, Gunawan Nugroho","doi":"10.17576/jkukm-2023-35(6)-05","DOIUrl":null,"url":null,"abstract":"Tapered wing shape of a planform wing is still widely used amongst airplane and UAVs with subsonic speed. In the design process, a good consideration for a good taper ratio of a wing is required to obtain the optimal and distribution for the desired function of an aircraft. Additionally, addition of expansion segment on wing planform shape is often used to increase the performance of wings without the increase of wingspan. Several methods to analyze a wing shape are experimentation, computational luid dynamics, and analytical calculation. Analyzing with analytical calculation will present limited, but accurate outcomes due to the assumptions that are made during the calculation. This method, however, is inexpensive. This is why analytical calculation is still a common method to use in the design process of an aircraft, particularly in the early phase. Five variants of taper ratio and 3 variants that with expansion segment is analyzed using the Lifting Line Theory that utilizes Fourier series at subsonic speed. The results are the values of and with respect to and the distribution of and along the wingspan. Increasing the taper ratio results in the decrease of and the increase of , while adding an expansion segment will give results that are dependent on the added segment’s taper ratio.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"865 ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wing Planform Analysis with Taper Ratio and Expansion Segment Variation with Lifting Line Theory\",\"authors\":\"Amien S. Dafa, Gunawan Nugroho\",\"doi\":\"10.17576/jkukm-2023-35(6)-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tapered wing shape of a planform wing is still widely used amongst airplane and UAVs with subsonic speed. In the design process, a good consideration for a good taper ratio of a wing is required to obtain the optimal and distribution for the desired function of an aircraft. Additionally, addition of expansion segment on wing planform shape is often used to increase the performance of wings without the increase of wingspan. Several methods to analyze a wing shape are experimentation, computational luid dynamics, and analytical calculation. Analyzing with analytical calculation will present limited, but accurate outcomes due to the assumptions that are made during the calculation. This method, however, is inexpensive. This is why analytical calculation is still a common method to use in the design process of an aircraft, particularly in the early phase. Five variants of taper ratio and 3 variants that with expansion segment is analyzed using the Lifting Line Theory that utilizes Fourier series at subsonic speed. The results are the values of and with respect to and the distribution of and along the wingspan. Increasing the taper ratio results in the decrease of and the increase of , while adding an expansion segment will give results that are dependent on the added segment’s taper ratio.\",\"PeriodicalId\":17688,\"journal\":{\"name\":\"Jurnal Kejuruteraan\",\"volume\":\"865 \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kejuruteraan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/jkukm-2023-35(6)-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(6)-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在亚音速飞机和无人机中,锥形机翼仍然被广泛使用。在设计过程中,需要充分考虑机翼的锥度比,以获得飞机所需功能的最佳分布。此外,在机翼平面形状上增加扩展段通常用于在不增加翼展的情况下提高机翼的性能。分析机翼形状的几种方法包括实验、计算流体动力学和分析计算。由于在计算过程中会做出一些假设,因此用分析计算法分析得出的结果虽然有限,但却很准确。不过,这种方法成本低廉。因此,分析计算仍是飞机设计过程中常用的方法,尤其是在早期阶段。我们利用傅里叶级数在亚音速下的提升线理论,分析了锥度比的 5 种变体和带有膨胀段的 3 种变体。结果显示了和的值以及和沿翼展的分布。增大锥度比会导致 和 的减小和 的增大,而增加一个扩展翼段则会产生与所增加翼段的锥度比相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wing Planform Analysis with Taper Ratio and Expansion Segment Variation with Lifting Line Theory
Tapered wing shape of a planform wing is still widely used amongst airplane and UAVs with subsonic speed. In the design process, a good consideration for a good taper ratio of a wing is required to obtain the optimal and distribution for the desired function of an aircraft. Additionally, addition of expansion segment on wing planform shape is often used to increase the performance of wings without the increase of wingspan. Several methods to analyze a wing shape are experimentation, computational luid dynamics, and analytical calculation. Analyzing with analytical calculation will present limited, but accurate outcomes due to the assumptions that are made during the calculation. This method, however, is inexpensive. This is why analytical calculation is still a common method to use in the design process of an aircraft, particularly in the early phase. Five variants of taper ratio and 3 variants that with expansion segment is analyzed using the Lifting Line Theory that utilizes Fourier series at subsonic speed. The results are the values of and with respect to and the distribution of and along the wingspan. Increasing the taper ratio results in the decrease of and the increase of , while adding an expansion segment will give results that are dependent on the added segment’s taper ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
期刊最新文献
3D Printed Carbon Fibre Reinforced Polyamides in High Temperature An App for Parking with Indoor Navigation Facility Numerical Analysis of Structural Batteries Response with the Presence of Uncertainty Experimental Investigation of Mechanical and Microstructural Properties of Concrete Containing Bentonite and Dolomite as a Partial Replacement of Cement The Design of Stroke Rehabilitation Using Artificial Intelligence K.A.K.I (Kinesthetic Augmented Kinematic Inference)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1