癫痫 MEG 数据的统计网络分析

IF 0.5 Q4 STATISTICS & PROBABILITY Communications for Statistical Applications and Methods Pub Date : 2023-11-30 DOI:10.29220/csam.2023.30.6.561
Haeji Lee, Chun Kee Chung, Jaehee Kim
{"title":"癫痫 MEG 数据的统计网络分析","authors":"Haeji Lee, Chun Kee Chung, Jaehee Kim","doi":"10.29220/csam.2023.30.6.561","DOIUrl":null,"url":null,"abstract":"Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Mag-netoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static / temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network di ff erences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical network analysis for epilepsy MEG data\",\"authors\":\"Haeji Lee, Chun Kee Chung, Jaehee Kim\",\"doi\":\"10.29220/csam.2023.30.6.561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Mag-netoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static / temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network di ff erences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.\",\"PeriodicalId\":44931,\"journal\":{\"name\":\"Communications for Statistical Applications and Methods\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications for Statistical Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29220/csam.2023.30.6.561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2023.30.6.561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

脑网络分析引起了神经科学研究人员对脑部疾病研究的兴趣。脑磁图(MEG)具有很高的时间和空间分辨率,尤其适合分析功能连接性。图论在功能连通性分析中的应用已被广泛研究,但针对 MEG 的网络建模研究仍有待加强。时间指数随机图模型(TERGM)考虑了网络的时间依赖性。我们对切除左脑(LT)或右脑(RT)部分的两组癫痫患者和健康对照组进行了脑网络分析,包括静态/时间网络统计。我们使用多集典型相关分析(MCCA)和TERGM研究了癫痫患者和健康对照组(HC)之间的网络差异。与患者组相比,健康对照组大脑网络的时间变化较少。TERGM的结果是,在模拟网络中,LT和RT的网络连接结构不如HC稳定。健康对照组的大脑网络处于稳定状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical network analysis for epilepsy MEG data
Brain network analysis has attracted the interest of neuroscience researchers in studying brain diseases. Mag-netoencephalography (MEG) is especially proper for analyzing functional connectivity due to high temporal and spatial resolution. The application of graph theory for functional connectivity analysis has been studied widely, but research on network modeling for MEG still needs more. Temporal exponential random graph model (TERGM) considers temporal dependencies of networks. We performed the brain network analysis, including static / temporal network statistics, on two groups of epilepsy patients who removed the left (LT) or right (RT) part of the brain and healthy controls. We investigate network di ff erences using Multiset canonical correlation analysis (MCCA) and TERGM between epilepsy patients and healthy controls (HC). The brain network of healthy controls had fewer temporal changes than patient groups. As a result of TERGM, on the simulation networks, LT and RT had less stable state than HC in the network connectivity structure. HC had a stable state of the brain network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
49
期刊介绍: Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.
期刊最新文献
Influence diagnostics for skew-t censored linear regression models Identification of indirect effects in the two-condition within-subject mediation model and its implementation using SEM Robust extreme quantile estimation for Pareto-type tails through an exponential regression model Two-stage imputation method to handle missing data for categorical response variable Counterfactual image generation by disentangling data attributes with deep generative models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1