{"title":"利用 SNN 叠加模型预测数字化转型背景下的绿色供应链影响","authors":"Te Li, Praveen Kumar Donta","doi":"10.4018/joeuc.334109","DOIUrl":null,"url":null,"abstract":"Green supply chain management is crucial for sustainable enterprises. Achieving it hinges on creating a greener supply chain through AI-driven data analysis. This enables precise market alignment, optimized management, and sustainable development. This study explores the link between digital transformation and green supply chain management. It leverages AI, specifically the XGBoost algorithm, to gauge sample contributions to market demand. It extracts multi-dimensional features in green supply chain management using NSCNN and CSCNN, combining them with the Stacking ensemble learning algorithm to form a new predictive model. This model, SNN-Stacking ensemble learning, outperforms traditional models, aiding resource planning, enhancing supply chain transparency, and promoting sustainable development by reducing environmental risks and resource waste. This research underscores the potential of digital technology in green supply chain management.","PeriodicalId":49029,"journal":{"name":"Journal of Organizational and End User Computing","volume":"42 11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Green Supply Chain Impact With SNN-Stacking Model in Digital Transformation Context\",\"authors\":\"Te Li, Praveen Kumar Donta\",\"doi\":\"10.4018/joeuc.334109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green supply chain management is crucial for sustainable enterprises. Achieving it hinges on creating a greener supply chain through AI-driven data analysis. This enables precise market alignment, optimized management, and sustainable development. This study explores the link between digital transformation and green supply chain management. It leverages AI, specifically the XGBoost algorithm, to gauge sample contributions to market demand. It extracts multi-dimensional features in green supply chain management using NSCNN and CSCNN, combining them with the Stacking ensemble learning algorithm to form a new predictive model. This model, SNN-Stacking ensemble learning, outperforms traditional models, aiding resource planning, enhancing supply chain transparency, and promoting sustainable development by reducing environmental risks and resource waste. This research underscores the potential of digital technology in green supply chain management.\",\"PeriodicalId\":49029,\"journal\":{\"name\":\"Journal of Organizational and End User Computing\",\"volume\":\"42 11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Organizational and End User Computing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.4018/joeuc.334109\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.4018/joeuc.334109","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Predicting Green Supply Chain Impact With SNN-Stacking Model in Digital Transformation Context
Green supply chain management is crucial for sustainable enterprises. Achieving it hinges on creating a greener supply chain through AI-driven data analysis. This enables precise market alignment, optimized management, and sustainable development. This study explores the link between digital transformation and green supply chain management. It leverages AI, specifically the XGBoost algorithm, to gauge sample contributions to market demand. It extracts multi-dimensional features in green supply chain management using NSCNN and CSCNN, combining them with the Stacking ensemble learning algorithm to form a new predictive model. This model, SNN-Stacking ensemble learning, outperforms traditional models, aiding resource planning, enhancing supply chain transparency, and promoting sustainable development by reducing environmental risks and resource waste. This research underscores the potential of digital technology in green supply chain management.
期刊介绍:
The Journal of Organizational and End User Computing (JOEUC) provides a forum to information technology educators, researchers, and practitioners to advance the practice and understanding of organizational and end user computing. The journal features a major emphasis on how to increase organizational and end user productivity and performance, and how to achieve organizational strategic and competitive advantage. JOEUC publishes full-length research manuscripts, insightful research and practice notes, and case studies from all areas of organizational and end user computing that are selected after a rigorous blind review by experts in the field.